
ALGEBRAIC ISOMONODROMIC DEFORMATIONS AND

THE MAPPING CLASS GROUP

GAËL COUSIN AND VIKTORIA HEU

Abstract. The germ of the universal isomonodromic deformation of a logarithmic connection
on a stable n-pointed genus g curve always exists in the analytic category. The first part of
this article investigates under which conditions it is the analytic germification of an algebraic
isomonodromic deformation. Up to some minor technical conditions, this turns out to be the
case if and only if the monodromy of the connection has finite orbit under the action of the
mapping class group. The second part of this work studies the dynamics of this action in the
particular case of reducible rank 2 representations and genus g > 0, allowing to classify all finite
orbits. Both of these results extend recent ones concerning the genus 0 case.
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1. Introduction

The mapping class group. Let g and n be nonnegative integers. Let Σg be a compact
oriented real surface of genus g, let yn = (y1, . . . , yn) be a sequence of n distinct points in Σg.
We shall denote by Y n := {y1, . . . , yn} the corresponding (unordered) set of points. The (pure)
mapping class group of (Σg, y

n) is defined to be the set of orientation preserving homeomor-
phisms h of Σg such that h(yi) = yi for all i ∈ J1, nK := {k ∈ Z | 1 ≤ k ≤ n}, quotiented by
isotopies:

Γg,n := Homeo+(Σg, y
n)/{isotopies relative to Y n} .

We can also consider homeomorphisms of Σg that preserve the set Y n, but do not necessarily
preserve the labelling of the punctures. This leads to the full mapping class group

Γ̂g,n := Homeo+(Σg, Y
n)/{isotopies relative to Y n} .
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Note that we have an exact sequence of groups

1 −→ Γg,n −→ Γ̂g,n −→ Sn −→ 1,

where Sn denotes the symmetric group of degree n. In particular, Γg,n is a subgroup of Γ̂g,n of
finite index n! . Let now y0 ∈ Σg \Y

n be a point. We denote the fundamental group of Σg \Y
n

with respect to the base point y0 by

(1) Λg,n := π1(Σg \ Y
n, y0) .

The composition α .α′ of two paths α,α′ ∈ Λg,n shall denote the usual concatenation “first α,
then α′”. For any group G, we may consider the space Hom(Λg,n, G) of representations as well
as the set of representations modulo conjugation, which we shall denote

(2) χg,n(G) := Hom(Λg,n, G)/G .

The mapping class group acts on χg,n(G). Define the groups of orientation preserving
homeomorphisms h of Σg such that h(y0) = y0 and h(yn) = yn, respectively h(Y n) = Y n,
modulo isotopy:

Γg,n+1 := Homeo+(Σg, y
n, y0)/{isotopies relative to Y n ∪ {y0}} ,

Γ̂•
g,n := Homeo+(Σg, Y

n, y0)/{isotopies relative to Y n ∪ {y0}} .

Now Γ̂•
g,n naturally acts on the fundamental group Λg,n: for h ∈ Γ̂•

g,n and α ∈ Λg,n, we set

a(h)(α) := h∗α .

Via the forgetful maps Γg,n+1 → Γg,n and Γ̂•
g,n → Γ̂g,n we obtain a commutative diagram

Γg,n+1 Γ̂•
g,n

a
Aut(Λg,n)

Γg,n Γ̂g,n Out(Λg,n) : Aut(Λg,n)/Inn(Λg,n) .

Indeed, any element h ∈ Homeo+(Σg, y
n) may be lifted to an element h0 ∈ Homeo+(Σg, y

n, y0).
Let h1 ∈ Homeo+(Σg, y

n, y0) be another representative. Then they are the extremities of an
isotopy (ht)t∈[0,1] relative to Y n. We have a loop γ ∈ Λg,n defined by γ(t) = ht(y0). Then for

any α ∈ Λg,n, we have a(h1)(α) = γ−1 . a(h0)(α) . γ .

In particular, for any group G, the mapping class group Γ̂g,n acts on the set χg,n(G), and

this action lifts to an action of Γ̂•
g,n on the space Hom(Λg,n, G). More precisely, for all ρ ∈

Hom(Λg,n, G), h ∈ Γ̂•
g,n and α ∈ Λg,n, we define

(3) (h · ρ)(α) := ρ(a(h−1)(α)) .

Application to isomonodromic deformations and a dynamical study. In this paper,
we establish two results about finite orbits of the mapping class group action on χg,n(G) for
G = GLrC. These results and their respective proofs can be read independently. In Theorem
A, which will be stated in Section 1.A and proven in Part A, we relate such finite orbits to
the existence of an algebraic universal isomonodromic deformation of a logarithmic connection
over a curve, whose monodromy belongs to that orbit. This motivates Theorem B, which will
be stated in Section 1.B and proven in Part B, classifying conjugacy classes of reducible rank 2
representations with finite orbit. To that end, we introduce a specific presentation of Λg,n and
explicit formulae for the mapping class group action.

Remark 1.0.1. Recall that a representation ρ ∈ Hom(Λg,n,GLrC) is called irreducible if the only
subvector spaces of Cr that are stable under Im(ρ) are {0} and C

r. A semisimple representation
is a direct sum of irreducible representations.
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1.A. Algebraization of universal isomonodromic deformations. We need to introduce
some additional vocabulary before stating our main result, which can be seen as a criterion
under which a GAGA-type theorem holds for isomonodromic deformations. In order to avoid
having to introduce each definition twice, we adopt the ω-notation described in Table 1.

ω ω−manifold ω− open

analytic
connected Hausdorff

complex analytic manifold
open with respect to Euclidean topology

algebraic
smooth irreducible

quasi-projective variety over C
open with respect to Zariski topology

Table 1.

Logarithmic connections. Let X be a ω-manifold and let D be a (possibly empty)
reduced normal crossing divisor on X. Denote by D1, . . . ,Dn the irreducible components of
D. A logarithmic ω-connection of rank r over X with polar divisor D is a pair (E,∇), where
E → X is a ω-vector bundle of rank r over X, whose sheaf of sections we also denote by E,
and ∇ is a C-linear morphism

∇ : E → E ⊗Ω1
X(logD) ,

which satisfies the Leibniz rule

∇(f · e) = f · ∇(e) + e⊗ df

for any f ∈ OX(∆) , e ∈ E(∆), where ∆ ⊂ X is any ω-open subset. We require D to be minimal
in the sense that for any i ∈ J1, nK, ∇ does not factor through

E ⊗Ω1(log(D −Di)) →֒ E ⊗ Ω1
X(logD).

Such a logarithmic connection (E,∇) is called flat if its curvature ∇2 is zero.
We are particularly interested in the case where X is a smooth projective curve (a compact

Riemann surface). Since thenX is of complex dimension one, any logarithmic connection over X
is automatically flat. Moreover, since then X is projective, any analytic logarithmic connection
over X is isomorphic to the analytification of a unique algebraic logarithmic connection over X
by one of Serre’s GAGA theorems [20, Prop. 18].

Monodromy. The notion of the monodromy representation of a flat connection varies
slightly in the literature. For introductory and technical purposes, let us give the definition
we are going to use. This definition can only be formulated in the analytic category; in the
algebraic case the monodromy representation is defined via analytification. Let X and D be as
above (X has arbitrary dimension). Denote X0 := X \D. Let (E,∇) be an analytic logarithmic
connection over X with polar divisor D. Assume moreover that this analytic connection is flat,
which is equivalent to it being integrable, i.e. S := ker(∇|X0) is a locally constant sheaf of rank
r over X0. Let Σ and Y ⊂ Σ be topological spaces such that there is a homeomorphism

Φ : (Σ, Y )
∼
→ (X,D) .

Fix such a homeomorphism and fix a point y0 ∈ Σ \ Y . Denote x0 := Φ(y0). For any path
γ : [0, 1] → Σ \ Y , the pull back (Φ ◦ γ)∗S is locally constant and thus isomorphic to a constant
sheaf. Hence γ defines an isomorphism γ(S) : Sγ(1) → Sγ(0). This isomorphism is invariant
by homotopy relative to {γ(0) , γ(1)} and satisfies γ1 . γ2(S) = γ1(S) ◦ γ2(S) for any pair of
paths (γ1, γ2). We obtain a representation π1(Σ \ Y, y0) → GL(Sx0). Via an isomorphism
Sx0 → C

r, one deduces a (non-canonical) representation ρ∇ ∈ Hom(π1(Σ, y0),GLrC) and a
canonical conjugacy class of representation

[ρ∇] ∈ Hom(π1(Σ \ Y, y0),GLrC)/GLrC .

We refer to ρ∇ as the monodromy representation and to [ρ∇] as the monodromy of (E,∇) with
respect to Φ. Conversely, given Φ, given a conjugacy class of representation [ρ] ∈ Hom(π1(Σ \
Y, y0),GLrC)/GLrC and a compatible choice of mild transversal models (see Section 3.2), there
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is a flat logarithmic analytic connection (E,∇) over X, unique up to isomorphism, inducing
these transversal models and such that [ρ∇] = [ρ] (see [7, Th. 3.3], adapted from [10, Prop.
5.4]). In our work, the use of the marking Φ is essential, as we wish to compare the monodromies
of connections over various homeomorphic curves.

Isomonodromy. Let C be a smooth projective curve of genus g, let D be a reduced divisor
of degree n on C. Let (E,∇0) be a logarithmic connection over C with polar divisor D.

A ω-isomonodromic deformation of (C,E,∇0) consists in the following data:

• a ω-family (κ : C → T,D) of n-pointed smooth curves of genus g (see Section 2.2);
• a flat logarithmic ω-connection (E ,∇) over C with polar divisor D;
• a point t0 in T ; we denote Ct0 := κ−1({t0}) and Dt0 := D|Ct0 ; and
• an isomorphism of pointed curves with logarithmic connections

(ψ,Ψ) : ((C,D), (E,∇0))
∼
→ ((Ct0 ,Dt0), (E ,∇)|Ct0 ) .

Why are such deformations called isomonodromic? Again we have to work in the analytic
category. Up to shrinking T to a sufficiently small polydisc ∆ containing t0, the family κ :
(C,D) → ∆ is topologically trivial. Hence there is a homeomorphism

Φ : (Σg, Y
n)×∆

∼
→ (C,D)

commuting with the natural projections to ∆. Now for any t ∈ ∆, the morphism

π1(Σg \ Y
n, y0) −→ π1((Σg \ Y

n)×∆, (y0, t)) ,

induced by the inclusion of the fiber at t, is an isomorphism. On the other hand, (E ,∇)|Ct
is a logarithmic connection over Ct with polar divisor Dt. By flatness of ∇, its monodromy
representation with respect to Φ|t and the base point y0 can be identified with the monodromy
representation of (E ,∇) with respect to Φ and the base point (y0, t). For t = t0, this means we
can identify the monodromy representation of (E ,∇) over C with respect to Φ with the mon-
odromy representation of (E,∇0) over C with respect to ψ−1 ◦Φ|t0 . In that sense, we may say
that with respect to some continuous “base point section” t 7→ (y0, t), the monodromy repre-
sentation along a germ of isomonodromic deformation is constant and given by the monodromy
representation of (E,∇0). More generally, one can say that an isomonodromic deformation
induces a topologically locally trivial family of monodromy representations, leading to a phe-
nomenon of monodromy of the monodromy representation. The latter will become tangible in
Section 4.

Statement of Theorem A. Following [12, Th. 3.4](see also [17, 15]), any triple (C,E,∇0)
as before admits a universal analytic isomonodromic deformation, which is unique up to unique
isomorphism, and whose parameter space T is the Teichmüller space Tg,n. This universal an-
alytic isomonodromic deformation satisfies a universal property with respect to germs of an-
alytic isomonodromic deformations of (C,E,∇0). A universal algebraic isomonodromic defor-
mation of (C,E,∇0), if it exists, would be an algebraic isomonodromic deformation whose
analytic germification is isomorphic to the germification of the universal analytic isomon-
odromic deformation of (C,E,∇0). In Section 2.4, we give an alternative definition and state a
universal property of universal algebraic isomonodromic deformations. Our main result is the
following.

Theorem A. Let C be a smooth complex projective curve of genus g. Let D be a set of n
distinct points in C and let Φ : (Σg, Y

n) → (C,D) be an orientation preserving homeomorphism.
Let (E,∇0) be an algebraic logarithmic connection of rank r over C with polar divisor D and
monodromy [ρ] ∈ χg,n(GLrC) with respect to Φ. Assume that 2g − 2 + n > 0 and that ∇0 is
mild. If r > 2, then assume further that ρ is semisimple. The following are equivalent:

(1) There is a universal algebraic isomonodromic deformation of (C,E,∇0).

(2) The orbit Γg,n · [ρ] in χg,n(GLrC) is finite.

Remark 1.A.1. Note that the orbit Γg,n · [ρ] in χg,n(GLrC) does not depend on the choice of Φ.
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Remark 1.A.2. As we will see in Section 3.2, the mildness assumption on ∇0 can always be
achieved after a suitable birational gauge transformation. In this sense, under the mentioned
restriction on the monodromy, Theorem A asserts that any finite branching universal isomon-
odromic deformation can be parametrized by algebraic functions.

We prove this theorem by adapting the proof for the special case of genus g = 0, which has
been established in [7]. The main ingredients of the proof of Theorem A are: the logarithmic
Riemann-Hilbert correspondence (see Section 3.2); the introduction of a base point section for
a family of punctured curves and the splitting of the fundamental group of the total space of
the family (see Section 3.1), together with its relation to the mapping class group (see Section
4.2). Both implications to be proven appear as special cases of stronger results: Theorem A1
and Theorem A2, respectively. We give their statements and proofs in Section 5.2.

The statement of Theorem A is natural in the following sense. As we recall in Section 2.1, the
(algebraic) moduli space Mg,n of stable smooth n-pointed genus g curves is the quotient of the
(analytic) Teichmüller space Tg,n by the natural action of Γg,n . Intuitively, a universal algebraic
isomonodromic deformation should be the quotient of the universal analytic isomonodromic
deformation with respect to a sufficiently large subgroup of Γg,n that fixes [ρ].

1.B. Dynamical study of finite orbits in the reducible rank 2 case. Since the pure
mapping class group is a finite index subgroup of the full mapping class group, for any repre-
sentation ρ ∈ Hom(Λg,n, G), the conjugacy class [ρ] ∈ χg,n(G) has finite orbit under Γg,n if and

only if it has finite orbit under Γ̂g,n. Note that the size of Γ̂g,n · [ρ] equals the size of the set of
conjugacy classes of m-tuples

{
(ρ′(s1), . . . , ρ

′(sm))
∣∣∣ ρ′ ∈ Hom(Λg,n, G) and [ρ′] ∈ Γ̂g,n · [ρ]

}
/G ,

where {s1, . . . , sm} is a set of generators of Λg,n. We introduce a specific presentation

Λg,n = 〈α1, β1, . . . , αg, βg, γ1, . . . , γn | [α1, β1] · · · [αg, βg]γ1 · · · γn = 1〉

and a subgroup

Γ̂◦
g,n = 〈τ1, . . . , τ3g+n−2, σ1, . . . , σn−1〉

of Γ̂•
g,n which, as such, acts on Hom(Λg,n, G), and which is sufficiently large in the sense that

the Γ̂◦
g,n-orbit of [ρ] ∈ χg,n(G) equals its Γ̂g,n-orbit. Moreover, the action of Γ̂◦

g,n on Λg,n can be
explicitely described (see Section 6). Table 2 summarizes the explicit action of the generators

τ1, . . . , τ3g+n−2, σ1, . . . , σn−1 of Γ̂
◦
g,n on the generators α1, β1, . . . , αg, βg, γ1, . . . , γn of Λg,n. Here

we only indicate the action on those of our generators of Λg,n that are not fixed by the action

of the generator of Γ̂◦
g,n under consideration.

τ2k , k ∈ J1, gK αk 7→ αkβk
τ2k−1 , k ∈ J1, gK βk 7→ βkαk
τ2g+k , k ∈ J1, g − 1K αk+1 7→ Θ−1

k αk+1

αk 7→ αkΘk

βk 7→ Θ−1
k βkΘk

where Θk = αk+1β
−1
k+1α

−1
k+1βk

τ3g−1+k , k ∈ J1, n− 1K αg 7→ αgΞk
βg 7→ Ξ−1

k βgΞk
γi 7→ Ξ−1

k γiΞk , i ∈ J1, kK
where Ξk = (γ1 . . . γk)

−1βg
σk , k ∈ J1, n− 1K γk 7→ γkγk+1γ

−1
k

γk+1 7→ γk

Table 2. Action of Γ̂◦
g,n on Λg,n.
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We then apply this explicit description of the mapping class group action to the specific
study of finite Γg,n-orbits on χg,n(GL2C) that correspond to reducible representations. For
g = 0, this study has been completely carried out in [8]. In this special case, the study
can be reduced to linear dynamics. To explain this, recall that any reducible representation
ρ ∈ Hom(Λg,n,GL2C) is conjugated to the tensor product of a character ρC∗ ∈ Hom(Λg,n,C

∗)
and an affine representation ρAff ∈ Hom(Λg,n,Aff(C)):

[ρ] = [ρC∗ ⊗ ρAff ] .

Then, [ρ] has finite orbit under Γg,n in χg,n(GL2C) if and only if [ρC∗ ] and [ρAff ] have finite
orbit under Γg,n in χg,n(C

∗) and χg,n(Aff(C)) respectively. For g = 0, the pure mapping class
group acts trivially on χg,n(C

∗) and on the linear part of ρAff . Hence in the special case g = 0,
the study of finite orbits reduces to the study of a certain linear action on the translation part
of ρAff .

For g > 0, the study of finite orbits of conjugacy classes of reducible GL2C-representations
also reduces to the case of scalar and affine representations, but the linear part of ρAff is
no longer invariant and there is no effective means to reduce the study to linear dynamics.
However, Table 2 allows to study the orbits explicitely. In the case g = 1 and n > 0, we find a
particular type of representations whose conjugacy classes have finite orbit under Γg,n, namely
the representations ρµ,c ∈ Hom(Λg,n,GL2C) defined by

ρµ,c(α1) :=

(
µ 0
0 1

)
ρµ,c(β1) :=

(
1 − 1

µ−1

0 1

)
ρµ,c(γi) :=

(
1 ci
0 1

)
∀i ∈ J1, nK

where µ ∈ C
∗ \ {1} is a root of unity and c = (c1, . . . , cn) ∈ C

n with
∑n

i=1 ci = 1. Note that the
condition

∑n
i=1 ci = 1 is necessary for ρµ,c to be well-defined. The complete classification, for

every g > 0 and n ≥ 0, of reducible rank-2 representations with finite Γg,n-orbit is the following.

Theorem B. Let g > 0, n ≥ 0. Let ρ ∈ Hom(Λg,n,GL2C) be a reducible representation.
Consider its conjugacy class [ρ] ∈ χg,n(GL2C). Then the orbit Γg,n · [ρ] is finite if and only if
one of the following conditions is satisfied.

(1) The representation ρ is a direct sum of scalar representations with finite images.

(2) We have g = 1, n > 0, there are a root of unity µ ∈ C
∗ \ {1} , c = (c1, . . . , cn) ∈ C

n

with
∑n

i=1 ci = 1 and a scalar representation λ with finite image such that

[ρ] ∈ Γg,n · [λ⊗ ρµ,c] .

Moreover, if the orbit Γg,n · [ρ] is finite, we can give an estimate for its cardinality, which for
ρ = λ1 ⊕ λ2 and ρ = λ⊗ ρµ,c in the cases (1) and (2) respectively is

(1) 1
2 ·max

{
card(Im(λi))

2g−1
∣∣ i ∈ {1, 2}

}
≤ card(Γg,n · [ρ]) ≤ card(Im(ρ))2g and

(2) max
{
N2 , φ(N)(2N − φ(N))Nn′−1

}
≤ card(Γg,n · [ρ]) ≤ (N2 − 1)Nn′−1N2

2 ,

where φ denotes the Euler totient function, n′ := card {i ∈ J1, nK | ρ(γi) 6∈ C
∗I2}, N :=

order(µ) and N2 := card(Im(λ)).

The heart of the proof of Theorem B is the complete classification of finite Γ̂g,n-orbits in
χg,n(Aff(C)) under the full mapping class group (see the beginning of Section 7 for details on
how we proceed). In Section 8.1, we deduce an explicit description of the finite Γg,n-orbits for
scalar and affine representations. The decomposition of reducible representations into a tensor
product of such representations then yields the result (see Sections 8.2 and 8.3).

During the evaluation process of the present work, a classification complementary to our The-
orem B appeared in the preprint [4]; it concerns finite Γg,n-orbits of irreducible representations
in χg,n(SL2C) for g > 0 and asserts that, in that case as well, finite orbits correspond to finite
representations if g > 1 and a special class of infinite representations with finite orbits appears
in the genus 1 case.
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Part A. Algebraization

2. Universal isomonodromic deformations

In this section, we will recall some well known results about moduli spaces and universal
families of curves. For a more detailed exposition, see for example [1, Chap. 15] and [13,
Chap. 6]. Then we turn to the existence of analytic and algebraic universal isomonodromic
deformations of connections over curves, and their respective universal properties. The main
purpose of this section is the precise setup of our notation and definitions. The reader might
want to skip this section at first and come back to it when needed (references will be given).

2.1. Moduli spaces of curves. We define a curve of genus g to be a smooth projective complex
curve C with H1(C,Z) = Z

2g. From now on, we will assume

(4) 2g − 2 + n > 0 .

As a set, the Teichmüller space Tg,n of n-pointed genus g curves is the set of isomorphism
classes [C,D,ϕ] of triples (C,D,ϕ), where C is a genus g curve, D = {x1, . . . , xn} is a set of
n distinct points in C and ϕ is a Teichmüller structure, i.e. an orientation-preserving home-
omorphism ϕ : (Σg, Y

n) → (C,D). Two n-pointed genus g curves with Teichmüller structure
(C,D,ϕ) and (C ′,D′, ϕ′) are said to be isomorphic if there exists an isomorphism of pointed
curves ψ : (C ′,D′) → (C,D) such that [ϕ] = [ψ ◦ ϕ′], where [ϕ] denotes the isotopy class of ϕ.
We have a natural action of Γg,n on Tg,n given by

[h] · [C,D,ϕ] := [C,D,ϕ ◦ h−1] ; [h] ∈ Γg,n , [C,D,ϕ] ∈ Tg,n .

The kernel of this action is finite. More precisely, we have (see [1, Prop 4.11 p. 189]):

Lemma 2.1.1. If the natural morphism Γg,n → Aut(Tg,n) has nontrivial kernel Kg,n, then
Kg,n ≃ Z/2Z and one of the following holds.

• (g, n) = (2, 0) and the non-trivial element of Kg,n is the hyperelliptic involution of Σ2.

• (g, n) = (1, 1) and the non-trivial element of Kg,n is the order 2 symmetry about the
puncture, given, for (Σ1, y1) = (C/Z2, 0), by z 7→ −z.

As a set, the moduli space Mg,n of curves of genus g with n (labeled) punctures is the set
of isomorphism classes [C,x] of pairs (C,x), where C is a genus g curve and x = (x1, . . . , xn)
is a tuple of n distinct points in C. The isomorphisms are isomorphisms of pointed curves that
respect the labellings of the n-tuples. Notice that a Teichmüller structure (C,D,ϕ) defines such
a pair (C,x), by setting x := (ϕ(yi))i∈J1,nK. In this way, we obtain a forgetful map

(5) πg,n : Tg,n → Mg,n

whose fibers are globally fixed by the action of Γg,n/Kg,n on Tg,n. Denote by Rg,n ⊂ Tg,n the set
consisting in points with non-trivial stabilizer for the action of Γg,n/Kg,n. The subset Bg,n :=
πg,n(Rg,n) of Mg,n characterizes pointed curves with automorphism groups not isomorphic to
Kg,n. We say that these curves have exceptional automorphisms.

Recall that Tg,n has a natural structure of a complex analytic manifold, and Mg,n has a
natural structure of a complex quasi-projective variety (see [1, chap. XIV]). The set Bg,n of
curves with exceptional automorphisms is a Zariski closed subset of Mg,n (see [1, Rem. 5.13
p. 202 and Th. 6.5 p. 207]) which is a proper subset (see [3, 18, 19, 5]). Moreover, the map
πg,n|Tg,n\Rg,n

: Tg,n \ Rg,n → Mg,n \ Bg,n is a non-branched analytic cover, with Galois group
Γg,n/Kg,n. For any point ⋆̂ ∈ Tg,n projecting to ⋆ ∈ Mg,n we obtain a tautological morphism

(6) taut⋆̂ : π1(Mg,n \ Bg,n, ⋆) ։ Γg,n/Kg,n
;

such that for the lift γ̂ in Tg,n with γ̂(0) = ⋆̂ of a loop γ corresponding to an element of
π1(Mg,n \Bg,n, ⋆) we have γ̂(1) = taut⋆̂(γ) · ⋆̂. For another point ⋆̂

′ = [h] · ⋆̂ we obtain taut[h]·⋆̂ =

h · taut⋆̂ · h
−1.
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2.2. Families of pointed curves. Let C be a curve of genus g and let D be a reduced divisor
of degree n on C. Recall that we always assume (4); i.e. the pointed curve (C,D) is stable.

A ω-family of n-pointed genus g curves with central fiber (C,D) is a datum

F(C,D) = (κ : C → T,D, t0, ψ) ,

where

• κ : C → T is a proper surjective smooth morphism of ω-manifolds;

• D =
∑n

i=1D
i is a reduced divisor on C such that

• there are pairwise disjoint sections σ1, . . . , σn of κ with σi(T ) = Di;

• t0 ∈ T is a point and

• ψ : (C,D)
∼
→ (Ct0 ,Dt0) is an isomorphism of ω-manifolds.

Here and in the following, we denote by Ct := κ−1({t}) the fiber of κ at a parameter t ∈ T ,
and we denote Dt := D|Ct accordingly. When there is a smooth connected ω-neighborhood ∆ of
t0 such that F(C,D)|∆ satisfies a certain property, we may say that F(C,D) satisfies this property
up to shrinking.

A morphism f : F ′
(C,D) → F(C,D) is a pair f = (fa, fb), where fa : C′ → C and fb : T ′ → T

are morphisms of ω-varieties such that the following diagram commutes (and in particular
fb(t′0) = t0).

(C,D)
id

ψ′

(C,D)

ψ

(C′,D′)

κ′

fa

(C,D)

κ

T ′ fb

T

Remark 2.2.1. Note that this definition implies that (C′,D′) is isomorphic to the pullback
fb∗(C,D) (the fibered product with respect to fb and κ).

Suppose now that we have a Teichmüller structure for (C,D), given by an orientation pre-
serving homeomorphism ϕ : (Σg, Y

n) → (C,D). A ω-family of n-pointed genus g curves with
Teichmüller structure with central fiber (C,D,ϕ) is a datum F+

(C,D,ϕ) = (F(C,D),Φ), where

F(C,D) is as above and Φ : (Σg, Y
n)× T

∼
→ (C,D) is a homeomorphism such that the following

diagram commutes, where pr denotes the projection to the second factor.

(Σg, Y
n)× {t0}

ϕ
(C,D)

ψ

(Σg, Y
n)× T

pr

Φ
(C,D)

κ

T

In particular, if we denote
Φt := Φ|(Σg,Y n)×{t} ,

then Φt0 = ψ ◦ ϕ. Notice that by definition, a ω-family with Teichmüller structure is topologi-
cally trivial.

For a given ϕ as above, up to shrinking, any analytic family F(C,D) lifts to a family F+
(C,D,ϕ)

with Teichmüller structure.
Let F+

(C,D,ϕ) = (F(C,D),Φ) and F ′+
(C,D,ϕ′) = (F ′

(C,D),Φ
′) be two ω-families with Teichmüller

structures. A morphism F ′+
(C,D,ϕ) → F+

(C,D,ϕ) is a datum f = (fa, fb) is as before, such that
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moreover, if we denote by ftop the continuous map defined by the diagram

(Σg, Y
n)× T ′

Φ′

ftop

(Σg, Y
n)× T

(C′,D′)
fa

(C,D) ,

Φ−1

then ftop is a fiberwise isotopy.
To a ω-family F(C,D) [resp. ω-family with Teichmüller structure F+

(C,D,ϕ)] as before, one

can associate a so-called ω-family F [resp. ω-family with Teichmüller structure F+] with non-
specified central fiber, by forgetting (C,D) [resp. (C,D,ϕ)] and the marking t0, ψ. A morphism
of ω-families with non-specified central fiber is a datum f as above for a convenient choice of
marked central fibers.

2.3. Universal families of pointed curves. Let F+
(C,D,ϕ) = (F(C,D),Φ) be a ω-family with

Teichmüller structure. Then the classifying map

class+(F+) :

{
T → Tg,n
t 7→ [Ct,Dt,Φt]

is holomorphic with respect to the natural analytic manifold structure of Tg,n. The Teichmüller
space Tg,n carries a universal family (see for example [13, Chap. 6]), which is an analytic family
with Teichmüller structure F+

g,n = (Fg,n,Φg,n) and non-specified central fiber, satisfying

class+(F+
g,n) = idTg,n .

The universal Teichmüller curve enjoys the following universal property: If F+ = (F ,Φ) is an
analytic family with Teichmüller structure and non-specified central fiber, then there is a unique
isomorphism

f+ : F+ ∼
−→ class+(F+)∗(Fg,n)

with fb = idT .
Let F(C,D) be a ω-family. Assume we have a labelling x of D, i.e. x = (xi)i∈J1,nK ∈ Cn

and D =
∑n

i=1 xi. Then there is a well-defined labelling D = (Di)i∈J1,nK of D defined by

D =
∑n

i=1D
i and ψ(xi) ∈ Di for all i ∈ J1, nK. We then have a well-defined classifying map

class(F) :

{
T → Mg,n

t 7→ [Ct,Dt]
,

which is a morphism of ω-varieties with respect to the natural structure of ω-variety on Mg,n.
We say that the fiber (Ct,Dt) of F at t ∈ T has exceptional automorphisms if class(F)(t) ∈ Bg,n.
This notion does not depend on the choice of a labelling.

Although there is no universal family of curves over Mg,n in the strict sense, we can consider
algebraic Kuranishi families. Let F be a ω-family and let t ∈ T be a parameter. Denote F|∆an

the analytic germification of F at t, which can be endowed with a Teichmüller structure Φ∆an.
We say that F is Kuranishi at t if class+(F|∆an ,Φ∆an) is a local isomorphism. The notion of
being Kuranishi at t does not depend on the choice of Φ∆an . We say that F is Kuranishi if it
is Kuranishi at each t ∈ T . Notice that if FKur is an algebraic Kuranishi family, then for any
labelling, the classifying map class(FKur) is dominant and has finite fibers.

For any stable n-pointed genus g curve (C,D), there exists an algebraic Kuranishi family
FKur
(C,D) with central fiber (C,D). Moreover, we have (see [1, Rem. 6.9, p. 208]):

Proposition 2.3.1 (Universal property of Kuranishi families). Let (C,D) and FKur
(C,D) be as

above. Let F ′
(C,D) be an algebraic family with central fiber (C,D). Then there are

• an étale base change p : (T ′′, t′′0) → (T ′, t′0); denote F ′′
(C,D) := p∗F ′

(C,D);

• a morphism q : (T ′′, t′′0) → (T, t0) and

9



• an isomorphism f : F ′′
(C,D)

∼
−→ q∗FKur

(C,D) with fb = id∆′′ .

2.4. Universal isomonodromic deformations. Let again (C,D) be a stable n-pointed genus
g curve. Let (E,∇0) be logarithmic ω-connection over C with polar divisor D.

Isomonodromic deformations. A ω-isomonodromic deformation of (C,E,∇0) is a tuple
I(C,E,∇0) = (F(C,D), E ,∇,Ψ), where

• F(C,D) = (κ : C → T,D, t0, ψ) is a ω-family with central fiber (C,D),

• (E ,∇) is a flat logarithmic ω-connection over C with polar divisor D and

• (ψ,Ψ) : (E → C,∇0) → (E → C,∇)|Ct0 is an isomorphism of ω-logarithmic connections,

i.e. Ψ : E → E|Ct0 is a ω-vector bundle isomorphism over ψ : C → Ct0 satisfying

Ψ∗
(
∇|Ct0

)
= ∇0.

Let I(C,E,∇0) and I ′
(C,E,∇0)

be two ω-isomonodromic deformations of (C,E,∇0). A morphism

f : I ′
(C,E,∇0)

→ I(C,E,∇0) is a datum f = (fa, fb, fvb), where (fa, fb) is a morphism F ′
(C,D) → F(C,D)

as in Section 2.2, and fvb is a morphism of ω-vector bundles over fa with ∇′ = fvb
∗
∇.

An algebraic isomonodromic deformation I(C,E,∇0) of (C,E,∇0) as above is called regular
if moreover (E ,∇) is regular (with respect to a suitable meromorphic structure at infinity).
The definition of regularity can be found in [10, Th. 4.1]. Putting this regularity condition
on I(C,E,∇0) may be seen as a way of standardizing algebraic isomonodromic deformations, as
illustrated by the following statement.

Lemma 2.4.1. If (E,∇0) is mild and I(C,E,∇0) is an algebraic isomonodromic deformation of
(C,E,∇0), then the analytification of I(C,E,∇0) is isomorphic to the analytification of a regular
algebraic isomonodromic deformation I ′

(C,E,∇0)
of (C,E,∇0).

This lemma will be proven in Section 3.2, where we will also recall the notion of mildness,
which is a minor technical condition.

Analytic universal isomonodromic deformations. Let ϕ : (Σg, Y
n)

∼
→ (C,D) be

an orientation preserving homeomorphism. Consider the universal Teichmüller family F+
g,n =

(Fg,n,Φg,n). We shall denote

Fg,n = (κg,n : C → Tg,n,D) ; Φg,n : (Σg, Y
n)× Tg,n

∼
→ (C,D) ; t0 := [C,D,ϕ] ∈ Tg,n .

By the definition of F+
g,n, we then have an isomorphism ψ : (C,D)

∼
→ (Ct0 ,Dt0). In particular,

FTeich
(C,D) := (Fg,n, t0, ψ) is an analytic family with central fiber (C,D), which moreover is topo-

logically trivial and has simply connected parameter space. The inclusion Φ−1
g,n ◦ ψ ◦ ϕ of the

topological fiber at t0 then defines an isomorphism

(7) Λg,n = π1(Σg \ Y
n, y0)

∼
→ π1((Σg \ Y

n)× Tg,n, (y0, t0)) .

Now let [ρ∇0 ] be the monodromy of (E,∇0) with respect to ϕ. The representation ρ∇0 can
then be trivially extended to a representation ρ of π1((Σg \ Y

n) × Tg,n, (y0, t0)). It turns out
that the conjugacy class of this “extended representation” is the monodromy representation,
with respect to Φg,n, of a certain flat logarithmic connection (E,∇) over X with polar divisor
D such that the pullback ψ∗(E,∇) restricted to Xt0 is canonically isomorphic to (E,∇0). We
obtain the universal analytic isomonodromic deformation

Iuniv, an
(C,E,∇0)

:= (FTeich
(C,D), E ,∇,Ψ

can) .

Its construction has been carried out in [12], using Malgrange’s Lemma (see [17]) and the fact
that Tg,n is contractible by Fricke’s Theorem. It satisfies the following universal property: if
I ′
(C,E,∇0)

= (F ′
(C,D), E

′,∇′,Ψ′) is an analytic isomonodromic deformation of (C,E,∇0), and if

∆′ is a sufficiently small neighborhood of its central parameter t′0, then there is a morphism
q : (∆′, t′0) → (Tg,n, t0) and a canonical isomorphism

I ′
(C,E,∇0)

|∆′ ≃ q∗Iuniv,an
(C,E,∇0)

.
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The construction of this analytic universal isomonodromic deformation and the proof of its
universal property rely on the fact that up to shrinking the parameter space, analytic families
of curves are topologically trivial and have simply connected parameter space. This is of course
no longer the case in the algebraic category, the extension of the monodromy representation of
(C,E,∇0) being the main challenge.

Algebraic universal isomonodromic deformations. An algebraic universal isomon-

odromic deformation of (C,E,∇0) is an algebraic isomonodromic deformation Iuniv,alg
(C,E,∇0)

=

(F(C,D), E ,∇,Ψ), where F(C,D) = FKur
(C,D) is an algebraic Kuranishi family with central fiber

(C,D). Note that an algebraic universal isomonodromic deformation of (C,E,∇0) does not
need to exist; its existence is precisely the subject of Theorem A. When it does exist, it satisfies
the following universal property, which will be proven in Section 3.3.

Proposition 2.4.2 (Universal property of universal algebraic isomonodromic deformations).

Let (C,E,∇0) and Iuniv,alg
(C,E,∇0)

be as above. Let I ′
(C,E,∇0)

be another algebraic isomonodromic

deformation of (C,E,∇0). Assume that

• (E,∇0) is mild;

• the monodromy representation of (E,∇0) is irreducible;

• Iuniv,alg
(C,E,∇0)

and I ′
(C,E,∇0)

are both regular.

Then there are

• an étale base change p : (T ′′, t′′0) → (T ′, t′0);
denote (F ′′

(C,D), E
′′,∇′′,Ψ′′) := p∗I ′

(C,E,∇0)
;

• a flat algebraic connection (L, ξ) of rank 1 over T ′′ with empty polar divisor;

• a morphism q : (T ′′, t′′0) → (T, t0) and

• an isomorphism f : (F ′′
(C,D), (E

′′,∇′′)⊗ κ′′∗(L, ξ),Ψ′′)
∼
−→ q∗Iuniv,alg

(C,E,∇0)
with fb = id∆′′ .

Remark 2.4.3. It is not possible without further assumptions to prove a similar statement for
initial connections (E,∇0) with merely semisimple monodromy representations.

3. Fundamental groups and the Riemann-Hilbert correspondence

In this section, we shall see that up to an étale base change, any algebraic family of pointed
curves can be endowed with a section avoiding the punctures. The existence of such a base
point section allows us to decompose the fundamental group of the total space of the family
of curves into an semi-direct product of the fundamental groups of the central fiber and the
parameter space. Together with the logarithmic Riemann-Hilbert correspondence, this will be
used to prove the universal property of universal algebraic isomonodromic deformations.

3.1. Splitting of the fundamental group.

Lemma 3.1.1 (Existence of a base point section). Let F(C,D) = (κ : C → T,D, t0, ψ) be an
algebraic family of pointed curves with central fiber (C,D) as in Section 2.2. Let x0 be a point
in C \D. Then there are

• a Zariski open neighborhood ∆ of t0 in T and

• a finite étale cover p : (∆′, t′0) → (∆, t0)

such that for F ′
(C,D) = (κ′ : C′ → ∆′,D′, t′0, ψ

′), defined by F ′
(C,D) := p∗F(C,D), there exists a

section σ of κ′ with values in C′ \ D′ such that σ(t′0) = ψ′(x0).

Proof. Since C is embedded in some projective space P
N , by Bertini’s Theorem, there exists a

hyperplane H of PN which intersects Ct0 transversely, is disjoint from Dt0 and satisfies ψ(x0) ∈
H. Since H is ample, we have deg(Ct ∩H) > 0 for each t ∈ T . In particular, H ∩ Ct 6= ∅ for
each parameter t ∈ T . By irreducibility of T , there exists an irreducible component T ′ of C ∩H
such that κ(T ′) = T and ψ(x0) ∈ T ′. Now κ|T ′ : T ′ → T is a connected finite ramified covering.
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Denote by Z1 ⊂ T its branching locus. Further, denote by Z2 the adherence of κ(T ′ ∩ D). By
construction, Z := Z1 ∪ Z2 is a Zariski closed proper subset of T not containing t0. Denote
∆ := T \ Z and

∆′ := κ−1(∆) ∩ T ′ .

We now have t′0 := ψ(x0) ∈ ∆′ and

p := κ|∆′ : (∆′, t′0) → (∆, t0)

is a connected finite étale cover. Consider the algebraic family F ′
(C,D) := p∗F(C,D). By definition

of the pullback, its total space C′ is given by a fibered product

C′ = {(x, t′) ∈ C|κ−1(∆) ×∆′ | κ(x) = p(t′)}

and we have κ′ : C′ → ∆′ ; (x, t′) 7→ t′ . On the other hand, ∆′ is a subset of C|κ−1(∆) by

construction and we can define a section σ of κ′ by

σ : ∆′ → C′ ; t′ 7→ (t′, t′) .

Since moreover ∆′ ∩ D = ∅ by the choice of Z2, we have σ(∆′) ∩ D′ = ∅. We conclude by
noticing σ(t′0) = (ψ(x0), t

′
0) = ψ′(x0). �

To fix the notation, let us recall the definition of (inner) semi-direct products.

Let G be a group and A a subgroup. Assume we have a group B̃ fitting into a split short
exact sequence of groups, as follows.

{1} A G B̃

σ

{1}

Assume further that the map A → G in that sequence is defined by the inclusion map. Then

A is a normal subgroup of G; for B := σ(B̃) we have a natural morphism η ∈ Hom(B,Aut(A))
defined by η(b)(a) = b · a · b−1 for all a ∈ A , b ∈ B; we have a group A⋊η B defined as the set
A×B endowed with the group law

(a , b) · (a′ , b′) = (a · η(b)(a′) , b · b′) ,

and the natural morphism A ⋊η B → G defined by (a, b) 7→ a · b is bijective, allowing us to
identify G = A⋊η B.

Lemma 3.1.2 (Splitting). Let F(C,D) = (κ : C → T,D, t0, ψ) be an algebraic family as in

Section 2.2. Let σ : T → C be a section of κ such that σ(T ) ⊂ C0 = C \ D. Denote C0 := C \D
and x0 := ψ−1(σ(t0)). Then

(8) π1(C
0, σ(t0)) = ψ∗π1(C

0, x0)⋊η σ∗π1(T, t0) ,

where for all γ ∈ π1(C
0, x0) and β ∈ π1(T, t0) we have

η(σ∗β)(ψ∗γ) = σ∗β · ψ∗γ · σ∗β
−1 .

Proof. Since σ takes values in C0, we have a morphism of fundamental groups σ∗ : π1(T, t0) →
π1(C

0, σ(t0)). From the embedding of the central fiber, we get the morphism ψ∗ : π1(C
0, x0) →

π1(C
0, σ(t0)) . Consider now the family of n-punctured curves given by κ : C0 → T . This family

is a topologically locally trivial fibration and the fiber over t0 identifies, via ψ, with C0. Hence
we have a long homotopy exact sequence

· · · −→ π2(C
0, σ(t0))

κ∗
−→ π2(T, t0) −→ π1(C

0, σ(t0))
ψ∗

−→ π1(C
0, σ(t0))

κ∗
−→ π1(T, t0) −→ {1}.

The maps σ∗ : πj(T, t0) → πj(C
0, τ(t0)) are sections for the corresponding κ∗ and we may

derive the following split short exact sequence:

{1} π1(C
0, x0)

ψ∗

π1(C
0, τ(t0)) κ∗

π1(T, t0)

σ∗

{1} . �
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Given a decomposition (8), the monodromy representation of the flat connection underlying
an isomonodromic deformation can be seen as an extension of the monodromy representation
of the initial connection. When does such an extension exist, and is it somehow unique? Again
we need a little group theory.

Lemma 3.1.3 (Extension of representations). Let G = A ⋊η B be as before and let ρA ∈
Hom(A,GLrC) be a representation.

• There exists a representation ρ ∈ Hom(G,GLrC) such that ρ|A = ρA if and only if there
exists a representation ρB ∈ Hom(B,GLrC) such that for all (a, b) ∈ A×B we have

ρA(b · a · b
−1) = ρB(b) · ρA(a) · ρB(b

−1) .

• Let ρ, ρ′ ∈ Hom(G,GLrC) be representations such that ρ|A = ρ′|A = ρA. Assume that
ρA is irreducible. Then there is λ ∈ Hom(B,C∗) such that

ρ = λ⊗ ρ′ .

The proof of this lemma is elementary and will be left to the reader. A similar statement can
be found in [7, Lem. 1].

3.2. Logarithmic Riemann-Hilbert correspondence. Let us briefly recall some notions
and results from [7], allowing to construct isomonodromic deformations from extensions of
monodromy representations.

Denote by D the unit disc around 0 in the complex line and denote by V the trivial vector
bundle of rank r over D. A (logarithmic) transversal model is an analytic logarithmic connection
(V, ξ) over D with polar locus {0}. It is called a mild transversal model if any automorphism of
the locally constant sheaf ker(ξ|D\{0}) is obtained by the restriction to D\{0} of an automorphism
of the sheaf ⊕r

i=1OD of holomorphic sections of V. Let us recall some examples.

• If (V, ξ) is a model such that its monodromy admits only one Jordan block for each
eigenvalue, then (V, ξ) is mild.

• If (V, ξ) is resonant (its residue admits two eigenvalues that differ by a non-zero integer)
and has diagonalizable monodromy, then (V, ξ) is not mild.

• If (V, ξ) is non-resonant, then (V, ξ) is mild.
• In particular, if (V, ξ) is a Deligne model, i.e., the real parts of the eigenvalues of its
residue take values in [0, 1), then (V, ξ) is mild.

From the third example, one can easily deduce that generic representations of punctured curve
fundamental groups cannot be realized by non-mild logarithmic connections.

The isomorphism class of a transversal model is called a transversal type. Accordingly, a mild
transversal type is the transversal type of a mild transversal model.

Let X be a ω-manifold, and let D be a reduced divisor in X. Denote (Di)i∈I the irreducible
components of D. Let

ρ ∈ Hom(π1(X \D),GLrC)

be a representation and L be a locally constant sheaf over X \ D with monodromy ρ. For
each i ∈ I, choose a holomorphic embedding fi : D →֒ X \ ∪j 6=iD

j such that fi(D) intersects
Di transversely exactly once, at fi(0), a smooth point of D. We say that a transversal model
(V, ξi) is compatible with ρ at Di if its monodromy is isomorphic to the one of f∗i L. This is a
well-defined notion, independant of the choice of fi. By isomorphism invariance, this adapts to
a notion of compatible transversal type. Compatible mild transversal models always exist, e.g.
one can choose Deligne models.

Assume we have a flat ω-logarithmic connection ∇ over X, with polar locus in D. By [7,
Prop. 3.2.1], the transversal type defined by f∗i ∇ is independant of the choice of fi, it depends
only on Di and ∇. It is called the transversal type of ∇ at Di. The connection ∇ is said to be
mild if for every component Di, the transversal type of ∇ at Di is mild.

Theorem 3.2.1 (Logarithmic Riemann-Hilbert). Let X be a ω-manifold, let D be a smooth
reduced divisor in X and let ρ : π1(X \ D) → GLrC be a representation. Let (Di)i∈I be the
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irreducible components of D. For each i ∈ I, let (V, ξi) be a mild transversal model compatible
with ρ. Then up to isomorphism there is a unique flat ω-logarithmic connection (E,∇) over X
with polar locus D such that

• the monodromy of (E,∇) is given by [ρ] and

• for each i ∈ I, the transversal type of ∇ at Di is given by (V, ξi);

• if “ω = algebraic”, then (E,∇) is regular.

Proof. The proof of this theorem in the analytic category can be found in [7, Section 3.2].
We only need to check that it also holds in the algebraic category. So assume now X is
a smooth irreducible quasiprojective variety. By definition, there exists a smooth irreducible

projective variety X̂ containing X as a Zariski open subset. Denote by D̂j , j ∈ J , the irreducible

components of X̂ \X and by D̂i the Zariski closure of Di in X̂ for each i ∈ I. By Hironaka’s

desingularization, we may suppose that D̂ :=
∑

i∈I∪J D̂
i is a normal crossing divisor. Moreover,

since X \D = X̂ \ D̂, the representation ρ defines

ρ̂ = ρ ∈ Hom(π1(X̂ \ D̂),GLrC) .

For each j ∈ J , choose a Deligne model (V, ξj) on (D, 0) compatible with ρ̂. Then again

by [7, Section 3.2], there exists an analytic logarithmic connection (Êan, ∇̂an) over X̂ with

polar divisor D̂ and the prescribed transversal types. Since X̂ is projective, this connection is

however analytically isomorphic to an algebraic logarithmic connection (Ê, ∇̂) on X̂ by GAGA

[20, Prop. 18]. Since any logarithmic connection on X̂ restricts to a regular connection on

X (see [10, Thm 4.1]), (E,∇) := (Ê, ∇̂)|X has the desired properties. It remains to show
uniqueness up to algebraic isomorphism. By the analytic statement, we already know that the
(analytic) isomorphism class of (Ean,∇an) is unique. Yet any analytic isomorphism between
regular algebraic logarithmic connections ∇1,∇2 over X is algebraic, for the isomorphism can
be seen as a horizontal section of ∇1 ⊗∇∨

2 , which is regular by [10, Prop. 4.6]. �

Remark 3.2.2. Using the above regularity argument, one also obtains that two flat logarithmic
connections with the same monodromy are bimeromorphically equivalent. In particular, every
logarithmic connection over a curve is mild up to a meromorphic gauge transformation.

3.3. Proof of the universal property. Lemma 2.4.1, stated in Section 2.4, implying that
under suitable generic conditions, algebraic universal isomonodromic deformations, if they exist,
may be chosen to be regular is now an immediate consequence of the logarithmic Riemann-
correspondence. Moreover, we are now able to prove their universal property, also stated in
Section 2.4.

Proof of Lemma 2.4.1. Let I(C,E,∇0) = (F(C,D), E ,∇,Ψ) with F(C,D) = (κ : C → T,D, t0, ψ)
be an algebraic isomonodromic deformation of (C,E,∇0). Let ρ ∈ Hom(π1(C \ D, x0),GLrC)
be a representative of the monodromy [ρ] of (E ,∇). For i ∈ J1, nK, let Di be the component
of D passing through ψ(xi). Since by assumption (C,E,∇0) is mild, Theorem 3.2.1 yields a
regular algebraic connection (E ′,∇′) over C with polar divisor D, monodromy [ρ] and the same
transversal types as ∇ at the components (Di)i∈J1,nK. Moreover, also by Theorem 3.2.1, there

is an isomorphism Ψ̃ : (E ,∇)|Ct0
∼
→ (E ′,∇′)|Ct0 . Then I ′

(C,E,∇0)
:= (F(C,D), E

′,∇′, Ψ̃ ◦ Ψ) is a

regular algebraic isomonodromic deformation of (C,E,∇0) and there is an analytic isomorphism
(Ean,∇an) ≃ (E ′an∇′an). In particular, the analytification of I(C,E,∇0) is isomorphic to the
analytification of I ′

(C,E,∇0)
. �

Proof of Proposition 2.4.2. Let Iuniv,alg
(C,E,∇0)

= (FKur
(C,D), E ,∇,Ψ) be a regular algebraic universal

isomonodromic deformation of (C,E,∇0) with parameter space (T, t0) and let I ′
(C,E,∇0)

=

(F ′
(C,D), E

′,∇′,Ψ′) be a regular algebraic isomonodromic deformation of (C,E,∇0) with param-

eter space (T ′, t′0). By Lemma 3.1.1, there is an étale base change p̃ : (T̃ , t̃0) → (T, t0), such
14



that for F̃Kur
(C,D) := p̃∗FKur

(C,D), there is a section σ : T̃ → C̃ avoiding the marked points. Since

F̃Kur
(C,D) is still Kuranishi, by the universal property of Kuranishi families, we have an étale base

change p : (T ′′, t′′0) → (T ′, t′0), a morphism q̃ : (T ′′, t′′0) → (T̃ , t̃0) and an isomorphism

f̃ : F ′′
(C,D) := p∗F ′

(C,D)
∼

−→ q̃∗F̃Kur
(C,D) .

In particular, σ lifts to a section σ′′ := f̃∗q̃∗σ : T ′′ → C′′ avoiding the marked points of F ′′
(C,D).

Denote by

ρ′′ , ρ̃ ∈ Hom(π1(C
′′ \ D′′ , σ′′(t′′0)),GLrC)

representatives of the conjugacy classes of the monodromy representations of (E ′′;∇′′) and

f̃∗q̃∗p̃∗(E ,∇) respectively (with respect to the identity). By the Splitting Lemma 3.1.2, we have

π1(C
′′ \ D′′, σ′′(t′′0)) = ψ′′

∗π1(C \D,x0)⋊η σ
′′
∗π1(T

′′, t′′0) .

Moreover, if ρ∇0 denotes a representative of the monodromy representation of (E,∇0) (with
respect to the identity), then ρ′′ and ρ̃ could be chosen so that

ρ′′|ψ′′

∗
π1(C\D,x0) = ρ̃|ψ′′

∗
π1(C\D,x0) = ψ′′

∗ρ∇0 .

Since ρ∇0 is irreducible, by Lemma 3.1.3 there is a representation λ ∈ Hom(π1(T
′′ , t′′0) ,C

∗)
such that λ⊗ (σ′′)∗ρ′′ = (σ′′)∗ρ̃. By the Riemann-Hilbert correspondence, there is a regular flat
algebraic connection (L, ξ) of rank 1 over T ′′, without poles, whose monodromy representation
is λ−1. The monodromy representation of its lift κ′′∗(L, ξ) is the trivial extension of σ′′∗λ−1 to
a representation ψ′′

∗π1(C \D,x0) ⋊η σ
′′
∗π1(T

′′, t′′0) → C
∗. Now the monodromy representations

of (E ′′;∇′′) ⊗ κ′′∗(L, ξ) and f̃∗q∗p∗(E ,∇) coincide. Both connections are regular, have same
monodromy representations and same transversal models, given by (E,∇0). Hence they are
isomorphic by the logarithmic Riemann-Hilbert correspondence. �

4. The monodromy of the monodromy

In this section, we introduce the so-called group of mapping classes of a ω-family, which is the
image of a canonical morphism from the fundamental group of the parameter space of the family
to the mapping class group of the central fiber. For an isomonodromic deformation, the action
on the monodromy representation of the initial connection by the group of mapping classes of the
underlying family of curves corresponds to the monodromy of the monodromy representation.
Under suitable conditions, this group can be canonically translated into a subgroup of Γg,n.

4.1. Mapping classes of the central fiber. As usual, let (C,D) be a stable n-pointed genus
g curve. Let F(C,D) be a ω-family with parameter space (T, t0). Let β : [0, 1] → T be a closed
path with endpoint t0, i.e. a continous map such that β(0) = β(1) = t0. By [14, Cor. 10.3],

the pullback bundle β∗(C,D) → [0, 1] possesses a topological trivialization Φ : (C,D)× [0, 1]
∼
→

β∗(C,D). For s ∈ [0, 1], we denote

Φs := Φ|(C,D)×{s}

and deduce a homeomorphism from the central fiber seen over {1} to the central fiber seen over
{0} given by

ψ−1 ◦ Φ0 ◦ Φ
−1
1 ◦ ψ : (C,D)

∼
→ (C,D) .

Its isotopy class shall be called the mapping class associated to β and F(C,D) and denoted

mapF(C,D)
(β) .

Lemma 4.1.1. The mapping class mapF(C,D)
(β) is well-defined, i.e. it does not depend on the

choice of a trivialization Φ. Moreover, mapF(C,D)
(β) only depends on the homotopy class of β.
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Proof. For fixed β, take two trivializations : Φ, Φ̃ : (C,D) × [0, 1]
∼
→ β∗(C,D). The family

Φ̃0 ◦ Φ̃
−1
s ◦ Φs ◦ Φ

−1
1 gives an isotopy from Φ0 ◦ Φ

−1
1 to Φ̃0 ◦ Φ̃

−1
1 .

Consider now two paths β1 and β2 that are homotopic relative to their endpoints. By definition,
there exists a continuous map θ : D → T , where D denotes the closed unit disc, such that
β2(s) = θ(eiπ(1+s)) and β1(s) = θ(eiπ(1−s)). Since D is contractible, by [14, Cor. 10.3], there is
a trivialization Φ of θ∗(C,D). It induces trivializations Φi of β∗i C for i = 1, 2. Since they are
both induced by Φ, we have Φ1

0 = Φ2
0 = Φ−1 and Φ1

1 = Φ2
1 = Φ1. �

Proposition 4.1.2. Let F(C,D) = (κ : C → T,D, t0, ψ) be a ω-family as in Section 2.2. Assume
that none of the fibers (Ct,Dt) has exceptional automorphisms. Let x be a labelling of D and
denote cl : T → Mg,n\Bg,n the corestriction of the induced classifying map class(F) (see Section

2.3). Let ϕ : (Σg, y
n)

∼
→ (C,x) be an orientation preserving homeomorphism and denote by

⋆̂ := [C,D,ϕ] the corresponding point in Tg,n. Then for all β ∈ π1(T, t0), the following equation
holds in Γg,n/Kg,n:

ϕ−1 ◦mapF(C,D)
(β) ◦ ϕ = taut⋆̂(cl∗β) ,

where taut⋆̂ is the tautological morphism taut⋆̂ : π1(Mg,n \ Bg,n, ⋆) → Γg,n/Kg,n (see (6)) and
⋆ := [C,x] ∈ Mg,n.

Proof. Denote F+
g,n = (Fg,n,Φg,n) the universal Teichmüller curve Fg,n = (κg,n : X → Tg,n,Y)

endowed with the Teichmüller structure Φg,n : (Σg, Y
n)×Tg,n

∼
→ (X ,Y). For any point t ∈ Tg,n,

we shall denote

Φg,nt := Φg,n|(Σg,Y n)×{t} : (Σg, Y
n)× {t}

∼
→ (Xt,Yt) .

Let p : (T̃ , t̃0) → (T, t0) be a universal cover and consider the pulled-back family

F̃ = (κ̃ : C̃ → T̃ , D̃) := p∗(κ : C → T,D) .

Now for any contractible analytic submanifold ∆̃ ⊂ T̃ containing t̃0, there is a topological
trivialization

Φ : (C,D)× ∆̃
∼

−→ (C̃, D̃)|
∆̃

of F̃|∆̃, unique up to isotopy, such that Φt̃0 = ψ with respect to the identification

(C̃t̃0 , D̃t̃0
)=(Ct0 ,Dt0)

provided by pullback. We denote Φ̃ := Φ ◦ (ϕ× id). Setting F̃+ := (F̃ |∆̃, Φ̃) defines an analytic
family of compact Riemann surfaces with marked points and Teichmüller structure. By the

universal property of the Teichmüller curve, up to modifying Φ̃ by a fiber-preserving isotopy,
there exists a unique isomorphism f of complex manifolds fitting into the following commutative
diagram:

(Σg, Y
n)× ∆̃

Φ̃

(Σg, Y
n)× ∆̃

class+(F̃+)∗Φg,n

(C̃, D̃)|∆̃
f

∼

κ̃

class+(F̃+)∗(X ,Y)

class+(F̃+)∗κg,n

∆̃ ∆̃ .

Now let [β] ∈ π1(T, t0) \ {1} and consider β̃ : [0, 1] → T̃ , the lift of β with starting point t̃0.

If the representative β of the homotopy class [β] is well chosen, then β̃ is a C∞-embedding.

By existence of tubular neighborhoods, there is a contractible neighborhood ∆̃ of t̃0 as above,

containing β̃. We claim that, up to isotopy,

(9) mapF(C,D)
(β) = Φ−1

β̃(1)
◦ Φt̃0 .
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Indeed, we have β∗(C,D) = (p ◦ β̃)∗(C,D) = β̃∗p∗(C,D) = β̃∗(C̃, D̃). The claim then follows
from the fact that ψ−1 ◦Φt̃0 is the identity and from the definition of the mapping class.

Denote β̂ := class+(F̃+)∗β̃, which is a path in Tg,n with starting point ⋆̂. By our definitions,
the following diagram is commutative if we remove the dotted arrow.

(Σg, Y
n)× {t̃0}

Φ̃t̃0

∼ (C̃t̃0 , D̃t̃0
)

ft̃0 ∼

(C̃
β̃(1)

, D̃
β̃(1)

)

f
β̃(1)∼

(Σg, Y
n)× {β̃(1)}

Φ̃
β̃(1)

∼

(Σg, Y
n)× {⋆̂}

Φg,n

⋆̂

∼
(X⋆̂,Y⋆̂)

∼

ψ̂
(X

β̂(1)
,Y

β̂(1)
) (Σg, Y

n)× {β̂(1)}
Φg,n

β̂(1)

∼

We define the induced isomorphism of pointed curves

(10) ψ̂ = fβ̃(1) ◦ (ft0)
−1,

so that adding the dotted arrow maintains this commutativity. We have

(11)





Φg,n
⋆̂

= ft̃0 ◦ Φ̃t̃0 = ft̃0 ◦ Φt̃0 ◦ ϕ

Φg,n
β̂(1)

= f
β̃(1)

◦ Φ̃
β̃(1)

= f
β̃(1)

◦ Φ
β̃(1)

◦ ϕ.

On the other hand, cl∗β is a closed path in Mg,n \Bg,n with end point ⋆. By construction, it

lifts, with respect to the forgetful map πg,n, to β̂, with β̂(0) = ⋆̂. By definition of the tautological
morphism taut⋆̂, we thus have, for [h] := taut⋆̂(cl∗β) ∈ Γg,n/Kg,n:

[h] ·
[
X⋆̂,Y⋆̂,Φ

g,n
⋆̂

]
=
[
X
β̂(1)

,Y
β̂(1)

,Φg,n
β̂(1)

]
.

By the definition of the action of the mapping class group on Tg,n, we now have

[h] ·
[
X⋆̂,Y⋆̂,Φ

g,n
⋆̂

]
= [h] ·

[
X
β̂(1)

,Y
β̂(1)

, ψ̂ ◦Φg,n
⋆̂

]
=
[
X
β̂(1)

,Y
β̂(1)

, ψ̂ ◦ Φg,n
⋆̂

◦ h−1
]
.

Hence there is an element [k] ∈ Kg,n such that, up to isotopy,

ψ̂ ◦ Φg,n
⋆̂

= Φg,n
β̂(1)

◦ h ◦ k .

Combined with (10) and (11), this implies, up to isotopy,

Φ−1

β̃(1)
◦Φt̃0 = ϕ ◦ h ◦ k ◦ ϕ−1 ,

which by (9) and the definitions of h and k yields the desired result. �

4.2. Splitting and the mapping class group. Let F(C,D) = (κ : C → T,D, t0, ψ) be a ω-

family of n-pointed genus g curves as in Section 2.2. Assume there is a section σ : T → C0 :=
C \ D of κ. Then we can define a ω-family of n + 1-pointed genus g curves F•

(C,D•) := (κ :

C → T,D•, t0, ψ) by setting D• := D + σ(T ) and D• := D + x0, where x0 := ψ−1(σ(t0)). To a
labelling x = (x1, . . . , xn) of D we can associate a labelling x• := (x1, . . . , xn, x0) of D

•. Note
that if a fiber of F• has exceptional automorphisms, then the corresponding fiber of F also has
exceptional automorphisms.

If none of the fibers of F• has exceptional automorphisms, we may corestrict the classifying
map class(F•) to obtain a morphism

cl• : T → Mg,n+1 \ Bg,n+1 .

Let ϕ : (Σg, y
n, y0)

∼
→ (C,x, x0) be an orientation preserving homeomorphism and denote

⋆̂• := [C,D•, ϕ] ∈ Tg,n+1 and ⋆
• := [C,x•] ∈ Mg,n+1. Note that since we assumed 2g−2+n > 0,

we have Kg,n+1 = {1} according to Lemma 2.1.1. We obtain a tautological morphism

taut⋆̂• : π1(Mg,n+1 \ Bg,n+1, ⋆
•) → Γg,n+1

as in (6).
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Proposition 4.2.1. Let F•
(C,D•) = (κ : C → T,D•, t0, ψ) be a ω-family of n+ 1-pointed genus

g curves as above. Assume that none of the fibers of F• has exceptional automorphisms. Let
ϕ : (Σg, y

n, y0)
∼
→ (C,x, x0) be an orientation preserving homeomorphism. Then

(12) π1(C
0, σ(t0)) = (ψ ◦ ϕ)∗Λg,n ⋊η σ∗π1(T, t0) ,

where for all α ∈ Λg,n and β ∈ π1(T, t0), we have

η(σ∗β)((ψ ◦ ϕ)∗α) = σ∗β · (ψ ◦ ϕ)∗α · σ∗β
−1

= (ψ ◦ ϕ)∗ a (taut⋆̂•(cl
•
∗ β)) (α) .

Here we adopt the notation above and denote a(h)(α) = h∗α for all h ∈ Γg,n+1 and α ∈ Λg,n as
in the introduction.

Proof. By Proposition 4.1.2, the following equation holds in Γg,n+1 = Γg,n+1/Kg,n+1 for every
β ∈ π1(T , t0):

(13) ϕ−1 ◦mapF•

(C,D•)
(β) ◦ ϕ = taut⋆̂•(cl

•
∗β) .

Denote C0 := C \D. We claim that for any γ ∈ π1(C
0, x0) and any β ∈ π1(T, t0), the following

equation holds in π1(C
0, σ(t0)):

(14) ψ∗mapF•

(C,D•)
(β)∗γ = σ∗β · ψ∗γ · σ∗β

−1 .

Indeed, let γ : [0, 1] → C0 be a closed path with endpoint x0. For any s0 ∈ [0, 1], we have
a closed path γs0 := γ × {s0} in the product space C0 × [0, 1]. We also have a path θ :
[0, 1] → C0 × [0, 1] ; s 7→ (x0, s). The path θ · γ1 · θ

−1 is closed and homotopic to γ0. Now let

β ∈ π1(T, t0) and let Φ : (C0, x0)× [0, 1]
∼
→ β∗(C0, σ(T )) be a trivialization commuting with the

natural projections to [0, 1]. Define the homeomorphism

Φ̃ := Φ ◦ ((Φ−1
1 ◦ ψ)× id[0,1]) : (C

0, x0)× [0, 1]
∼
→ β∗(C0, σ(T )) ,

which is another trivialization, satisfying Φ̃1 = ψ and Φ̃0 = ψ∗mapF•

(C,D•)
(β). Since Φ̃ is continu-

ous, the closed paths Φ̃∗γ0 and Φ̃∗θ ·Φ̃∗γ1 ·Φ̃∗θ
−1 are homotopic in β∗(C0, σ(T )). Considering the

natural projection κ : β∗(C0, σ(T )) → (C0, σ(T )), we have κ∗Φ̃∗γ0 = Φ̃0∗γ and κ∗Φ̃∗γ1 = Φ̃1∗γ.

Since moreover κ∗Φ̃∗θ = σ∗β, we have (14).
Since ϕ is a homeomorphism, the induced map ϕ∗ : Λg,n → π1(C

0, x0) is an isomorphism.
The statement then follows from (13), (14) and the Splitting Lemma 3.1.2 . �

5. Necessary and sufficient conditions for algebraizability

We shall see in Section 5.2 that Theorem A is a corollary of the juxtaposition of Theorem A1,
showing that our algebraizability criterion for germs of universal isomonodromic deformations
is necessary, and Theorem A2, showing that it is also sufficient. We have already established
the main ingredients for the proofs of both theorems. For Theorem A2, we moreover need a
representation-theoretical result developed in Section 5.1.

5.1. Extensions of representations. We shall now consider the problem of extending a repre-
sentation of the fundamental group of a fiber of a family of pointed curves to a representation for
the whole family in light of Lemma 3.1.3 and Proposition 4.2.1. We begin with the elementary
case of non-semisimple rank 2 representations.

Let A,B be groups. Consider a representation ρ ∈ Hom(A,Upp), where Upp is the group of
invertible upper triangular matrices of rank 2. To such a representation, we may associate two
other ones : the scalar part ρC∗ : α 7→ ρ(α)2,2 and the affine part ρAff := ρ−1

C∗ ⊗ ρ. The latter
takes values in

Aff(C) := {(ai,j) ∈ Upp | a2,2 = 1}

which is isomorphic to the affine group of the complex line.
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Lemma 5.1.1. Let ρ = ρC∗ ⊗ ρAff and ρ′ = ρ′
C∗ ⊗ ρ′Aff as above, and assume that they are

not semisimple. We have [ρ] = [ρ′] ∈ Hom(A,GL2C)/GL2C if and only if ρC∗ = ρ′
C∗ and

[ρAff ] = [ρ′Aff ] ∈ Hom(A,Aff(C))/Aff(C).

Proof. The ”if”-part is trivial. Assume [ρ] = [ρ′]. Since they take values in Upp, both repre-
sentations ρ and ρ′ leave the line span(e1) of C2 invariant. By non-semisimplicity, for each of
the representations, there is no other globally invariant line. Let M = (mi,j) ∈ GL2C conjugate
both representations. Then M must leave span(e1) invariant, i.e. M ∈ Upp. As the scalars are
central in GL2C, the element M/m2,2 ∈ Aff(C) conjugates both representations. In particular
ρC∗ = ρ′

C∗ and M/m2,2 conjugates ρAff and ρ′Aff . �

Lemma 5.1.2. Let ρA ∈ Hom(A,GL2C) be non-semisimple. Let θ ∈ Hom(B,Aut(A)) such
that for all h ∈ Im(θ), we have [ρA] = h · [ρA] := [ρA ◦ h−1]. Then there exists a representation
ρB ∈ Hom(B,GL2C) such that

ρA(θ(β)
−1(α)) = ρB(β)

−1ρA(α)ρB(β) ∀α ∈ A , β ∈ B .

Proof. We may assume that ρA takes values in Upp. By assumption, for each β ∈ B, there exists
a matrix Mβ ∈ GL2C such that ρA(θ(β)

−1(•)) = M−1
β ρA(•)Mβ . By Lemma 5.1.1, we may as-

sumeMβ ∈ Aff(C). If Im(ρA) ⊂ Upp is nonabelian, then it has trivial centralizer and the matri-
ces Mβ ∈ Aff(C) are uniquely defined. Otherwise, we have Im(ρA) ⊂ {λ ( 1 τ0 1 ) | λ ∈ C

∗ , τ ∈ C}

and the matrices Mβ are uniquely defined if we impose Mβ ∈
{(

µ 0
0 1

) ∣∣ µ ∈ C
∗
}
. It is now

straightforward to check that given these choices, the well-defined map β 7→Mβ is a morphism
of groups. �

For a similar result for semisimple representations ρA (of arbitrary rank), the group B, which
in our case will be the fundamental group of a parameter space, might have to be modified, in
order to take into account the non-unicity of the matrices Mβ due to possible permutations of
irreducible components.

Proposition 5.1.3. Let ρA ∈ Hom(A,GLrC) be semisimple. Let (T, t0) be a smooth connected
quasi-projective variety, and let θ ∈ Hom(π1(T, t0),Aut(A)) such that H := Im(θ) stabilizes
[ρA]. Then there is an étale base change p : (T ′, t′0) → (T, t0) and a representation ρB ∈
Hom(π1(T

′, t′0),GLrC) such that

ρA(θ(p∗β)
−1(α)) = ρB(β)

−1 · ρA(α) · ρB(β) ∀α ∈ A , β ∈ π1(T
′, t′0) .

Proof. Let ρA =
⊕

i∈I ρ
i
A be a decomposition such that each ρiA is irreducible. The subgroup

⋂

i∈I

StabAut(A)[ρ
i
A] ⊂ StabAut(A)[ρA] ,

stabilizing the conjugacy class [ρiA] for each i ∈ I, is of finite index (see for example [7, Lemma

3]). Hence the subgroup H̃ := H ∩i∈I StabAut(A)[ρ
i
A] is of finite index in H. Consider now the

finite connected unramified covering p̃ : (T̃ , t̃0) → (T, t0) characterized by p̃∗π1(T̃ , t̃0) = θ−1(H̃).

Note that p̃ induces a structure of smooth quasi-projective variety on T̃ . Since H̃ stabilizes [ρiA],

for every h ∈ H̃ and every i ∈ I, there is a matrix M i
h ∈ GLriC such that

(15) (M i
h)

−1 · ρiA ·M i
h = [h] · ρiA .

Given i and h, the choice of M i
h is unique up to an element of the centralizer of ρiA. Since ρiA

is irreducible, this centralizer is given by the set of scalar matrices. Denote by M i
h ∈ PGLriC

the projectivization of M i
h ∈ GLriC. Then ρB

i : β 7→ M i
θ∗p̃∗β

is a well-defined element of

Hom(π1(T̃ , t̃0),PGLriC). According to the Lifting Theorem [6, Th. 3.1], there exists a Zariski

closed subset Z̃ of T̃ not containing t̃0, a finite morphism of smooth quasi-projective varieties

p′ : (T̃ ′, t′0) → (T̃ \ Z̃, t̃0) ,
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étale in a neighborhood T ′ of t′0, and a representation ρiB ∈ Hom(π1(T̃
′, t′0),GLriC) whose

projectivization is p′∗ρB
i. For a convenient choice of p′, this property is satisfied for all i ∈ I

at once. We obtain a representation ρB :=
⊕

i∈I ρ
i
B in Hom(π1(T

′, t′0),GLriC) satisfying the
required properties with respect to p := p̃ ◦ p′|T ′ . �

5.2. Finiteness and algebraization.

Theorem A1. Let (C,D) be a stable n-pointed genus g curve as in Section 2.2. Let ϕ :

(Σg, Y
n)

∼
→ (C,D) be an orientation preserving homeomorphism. Let (E,∇0) be an algebraic

logarithmic connection over C with polar divisor D and denote by [ρ∇0 ] ∈ χg,n(GLrC) its
monodromy with respect to ϕ. Let I(C,E,∇0) = (F(C,D), E ,∇,Ψ) be an algebraic isomonodromic
deformation of (C,E,∇0) with parameter space T as in Section 2.4. Assume that

• the classifying map class(F) : T → Mg,n is dominant (see Section 2.3).

Then

• the Γg,n-orbit of [ρ∇0 ] in χg,n(GLrC) is finite.

Proof. The orbit Γg,n · [ρ∇0 ] does not depend on the choice of ϕ. Moreover, it is canonically
identified, for any t1 ∈ T , with the orbit Γg,n · [ρt1 ] of the monodromy of the connection (E ,∇)
restricted to the fiber over t1 of the family F . Since class(F) is dominant we may assume,
without loss of generality, that ⋆ := class(F)(t0) ∈ Mg,n \ Bg,n. Moreover, up to restricting
I(C,E,∇0) to a Zariski open neighborhood ∆ of t0 in T , we may assume that class(F)(T ) ∩ Bg,n =
∅. Notice that this property, as well as the assumption of class(F) being dominant is not
altered by finite covers and further excision of strict subvarieties not containing t0. According
to Lemma 3.1.1, up to such a manipulation, we may assume that F(C,D) = (κ : C → T,D, t0, ψ)

admits a section σ : T → C of κ with values in C0 := C \ D such that σ(t0) = ψ ◦ ϕ(y0).
Denote by ρ a representative of the monodromy representation of (E ,∇) with respect to the
identity such that the restriction of ρ to the subgroup (ψ ◦ ϕ)∗Λg,n of π1(C

0, σ(t0)), given by
the inclusion of the central fiber, is identical to (ψ ◦ ϕ)∗ρ∇0 . Such a representative exists, as
implies for example Theorem 3.2.1. According to Proposition 4.2.1, we then have a semi-direct
product decomposition

π1(C
0, σ(t0)) = (ψ ◦ ϕ)∗Λg,n ⋊η σ∗π1(T, t0) ,

where we have two different expressions for its structure morphism η, proving that

H := taut⋆̂•(cl
•
∗π1(T, t0)) ⊂ Γg,n+1

acts on ρ∇0 ∈ Hom(Λg,n,GLrC) by conjugation. More precisely, for all α ∈ Λg,n and [h] =
taut⋆̂•(cl

•
∗ β) ∈ H, we have

ρ∇0 (a(h)(α)) = ρ(σ∗β) · ρ∇0(α) · ρ(σ∗β
−1)

and in particular [h−1] · [ρ∇0 ] = [ρ∇0 ]. In other words, H is a subgroup of the stabilizer of [ρ∇0 ]
in Γg,n+1. By definition of the mapping class group action, we then have

π(H) ⊂ StabΓg,n [ρ∇0 ] ,

where π : Γg,n+1 → Γg,n is the projection forgetting the marking y0. Since the size of the orbit
Γg,n · [ρ∇0 ] equals the index of StabΓg,n [ρ∇0 ] in Γg,n, it now suffices to prove that π(H) has
finite index in Γg,n. Denote by q : Γg,n → Γg,n/Kg,n the quotient by the normal subgroup Kg,n,
which, by Lemma 2.1.1, has order at most 2. Hence for the indices, we have

[Γg,n : π(H)] ≤ 2 · [Γg,n/Kg,n : q(π(H))] .

We have a commutative diagram

Γg,n+1

π

π1(T, t0)
taut⋆̂• ◦ cl•∗

taut⋆̂ ◦ cl∗

Γg,n
q

Γg,n/Kg,n ,
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where cl : T → Mg,n \ Bg,n denotes the corestriction of class(F). On the other hand, by the
dominance assumption and [9, Lemma 4.19], the subgroup cl∗ π1(T, t0) of π1 (Mg,n \ Bg,n, ⋆)
is of finite index. In particular, since the tautological morphism taut⋆̂ : π1 (Mg,n \ Bg,n, ⋆) ։

Γg,n/Kg,n is onto, the subgroup q(π(H)) = taut⋆̂(cl∗π1(T, t0)) of Γg,n/Kg,n has finite index as
well. �

Theorem A2. Let F(C,D) = (κ : C → T,D, t0, ψ) be an algebraic family of stable n-pointed
genus g curves with central fiber (C,D) as in Section 2.2. Let (E,∇0) be an algebraic logarithmic
connection over C with polar divisor D and denote by [ρ∇0 ] ∈ χg,n(GLrC) its monodromy with

respect to an orientation preserving homeomorphism ϕ : (Σg, Y
n)

∼
→ (C,D). Assume that

• (E,∇0) is mild,

• r = 2 or ρ∇0 is semisimple, and

• the Γg,n-orbit of [ρ∇0 ] in χg,n(GLrC) is finite.

Then there are

• an étale base change p : (T ′, t′0) → (T, t0) and

• a flat algebraic logarithmic connection (E ,∇) over C′ := p∗C with polar divisor p∗D,

such that ψ∗(E ,∇)|C′

t′
0

is isomorphic to (E,∇0).

Proof. Since (C,D) is stable by assumption, it only admits a finite number of automorphisms.
Let x0 ∈ C \D be a point fixed by no automorphism other than the identity. Up to isotopy, we
may assume ϕ(y0) = x0. Let x

• be the labelling of D• = D+x0 induced by ϕ. By construction,
we have ⋆ := [C,x•] ∈ Mg,n+1 \ Bg,n+1. Up to an étale base change, we may assume, by
Lemma 3.1.1, that there is a section σ : T → C of κ with values in C0 := C \ D and such that
σ(t0) = ψ(x0). With the notation of Section 4.2, we may consider the family of n + 1-pointed
genus g curves F•

(C,D•) = (κ : C → T,D + σ(T ), t0, ψ). According to Proposition 4.2.1, we have

a semi-direct product decomposition π1(C \ D, σ(t0)) = (ψ ◦ ϕ)∗Λg,n ⋊η σ∗π1(T, t0), where

η(σ∗β)((ψ ◦ ϕ)∗α) = σ∗β · (ψ ◦ ϕ)∗α · σ∗β
−1 = (ψ ◦ ϕ)∗a(θ∗β)(α)

and θ := taut⋆̂• ◦ cl
•
∗ : π1(T, t0) → Γg,n+1.

Since the Γg,n+1-orbit of [ρ∇0 ] in χg,n(GLrC) is finite, the stabilizer

H := StabΓg,n+1 [ρ∇0 ]

of the conjugacy class of ρ∇0 under the action of Γg,n+1 has finite index in Γg,n+1. Since the

tautological morphism is onto, the subgroup taut−1
⋆̂•

(H) of π1(Mg,n+1 \ Bg,n+1, ⋆) then has also
finite index. In particular, there is a finite connected étale cover q : (U, u0) → (Mg,n+1\Bg,n+1, ⋆)

such that π1(U, u0) = taut−1
⋆̂•

(H). Now consider the fibered product

(T ′, t′0)
p

(T, t0)

class(F•)

(U, u0)
q

(Mg,n+1, ⋆).

We denote the pullback family of curves by F ′
(C,D•) = (κ′ : C′ → T ′,D′ + σ′(T ′), t′0, ψ

′) :=

p∗F•
(C,D•). We further denote cl′ = cl• ◦ p, which is the corestriction of class(F ′). By construc-

tion, the morphism θ′ := θ ◦ p = taut⋆̂• ◦ cl
′
∗ : π1(T

′, t′0) → Γg,n+1 takes values in H.
Again up to an étale base change of (T ′, t′0), by Proposition 5.1.3 and Lemma 5.1.2, there is

a representation ρB ∈ Hom(π1(T
′, t′0),GLrC) such that for all β ∈ π1(T

′, t′0), α ∈ Λg,n, we have
(
[θ′∗β]

−1 · ρ∇0

)
(α) = ρB(β) · ρ∇0(α) · ρB(β

−1) .

Since by definition
(
[θ′∗β]

−1 · ρ∇0

)
(α) = ρ∇0(a(θ

′
∗β)(α)), we obtain a well-defined representation

ρ :

{
π1(C

′ \ D′, σ′(t′0)) → GLrC

(ψ′ ◦ ϕ)∗α · σ′∗β 7→ ρ∇0(α) · ρB(β)
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(see Lemma 3.1.3) with respect to the semi-direct product decomposition π1(C
′ \ D′, σ′(t′0)) =

(ψ′ ◦ ϕ)∗Λg,n ⋊η σ
′
∗π1(T

′, t′0). By construction, ρ extends ρ∇0 . We conclude by the logarithmic
Riemann-Hilbert correspondence (see Theorem 3.2.1). �

Proof of Theorem A. Let us first prove the implication (1) ⇒ (2). Let Iuniv,alg
(C,E,∇0)

= (FKur
(C,D), E ,

∇,Ψ) be an algebraic universal isomonodromic deformation of (C,E,∇0) as in Section 2.4. Then
by definition, the family FKur

(C,D) is Kuranishi. In particular, the classifying map class(FKur) :

T → Mg,n is dominant. Then by Theorem A1, the Γg,n-orbit of [ρ∇0 ] in χg,n(GLrC) is finite.
Let us now prove the implication (2) ⇒ (1). Let FKur

(C,D) = (κ : C → T,D, t0, ψ) be any

algebraic Kuranishi family with central fiber (C,D) as in Section 2.2. Note that such a family
exists since (C,D) is stable, and that it remains Kuranishi after pullback via an étale base
change. Up to such a manipulation, according to Theorem A2, the family FKur

(C,D) can be endowed

with a flat algebraic logarithmic connection (E ,∇) over C with polar divisor D such that there
is an isomorphism Ψ : (E,∇0) → (E ,∇)|Ct0 commuting with ψ via the natural projections

to (C,D) and (Ct0 ,Dt0) respectively. Now Iuniv,alg
(C,E,∇0)

:= (FKur
(C,D), E ,∇,Ψ) defines an algebraic

universal isomonodromic deformation of (C,E,∇0) (see Section 2.4). �

Part B. Dynamics

6. Effective description of the mapping class group action

In this section we describe the action of Γ̂g,n on Λg,n in terms of specified generators for both
groups.

6.1. Presentation of the fundamental group. To give an effective description of Λg,n and

how Γ̂g,n acts, we will assume that Σg is the subsurface of genus g of R3 depicted in Figure 1.
On this surface we also depicted, in gray, an embedded closed disk ∆̄ ⊂ Σg, we will denote ∆
its interior. We fix n and we consider a subset Y n = {y1, . . . , yn} ⊂ ∆ of cardinality n, as well
as a point y0 ∈ ∆̄ \∆. We have

π1(Σg \∆, y0) =
〈
α1, β1, . . . , αg, βg, δ

∣∣ [α1, β1] · · · [αg, βg] = δ−1
〉
,

where the mentioned generators correspond to the loops in Figure 1. Note that δ runs over the
boundary of ∆̄.

βg

αg

β1βg−1

y0

αg−1 α1

δ

Figure 1. Preferred elements of the fundamental group, I

The loops in Figure 2 correspond to the following presentation.

π1(∆̄ \ Y n, y0) = 〈γ1, . . . , γn, δ | γ1 · · · γn = δ〉 .

By the Van Kampen theorem, we have

Λg,n = π1(Σ \∆, y0) ∗δ π1(∆̄ \ Y n, y0)

=
〈
α1, β1, . . . , αg, βg, γ1, . . . , γn | γ1 · · · γn = ([α1, β1] · · · [αg, βg])

−1
〉
.

In the sequel, writing “the generators” of Λg,n, we will refer to the above

(αi)i∈J1,gK , (βi)i∈J1,gK , (γj)j∈J1,nK .
22



y0

δ

y1 y2 yn

γnγ1 γ2

Figure 2. Preferred elements of the fundamental group, II

6.2. Mapping class group generators. We define Γ1
g to be the mapping class group of ori-

entation preserving homeomorphisms of Σ\∆ that restrict to the identity on ∂∆. Continuating
such homeomorphisms by the identity on ∆, we get a morphism

ϕg : Γ
1
g → Γ̂•

g,n .

After Lickorish [16] (see also [11, Th. 4.13]), the group Γ1
g is generated by the (right) Dehn-

twists along the loops τ1, . . . , τ3g−1 represented in Figure 3.

τ2g+1

τ2g
τ2

τ2g−1 τ2g−3 τ1

τ2g−2

τ3g−1 τ3g−2

Figure 3. Dehn-twists

A right Dehn twist acts on paths which cross the corresponding Dehn curve as depicted in
Figure 4. This action can be summarized as “a path crossing the Dehn curve has to turn right”.
A left Dehn twist is the inverse of a right Dehn twist.

(γ)γ

τ

τ

Figure 4. Dehn-twist action

One can now easily check the following.

Lemma 6.2.1 (Dehn-twists). The action of the Dehn twists above on the fundamental group
π1(Σg \ ∆, y0) is given in Table 3, where the right hand side lists only the effect on those
generators that are not fixed by the considered twist. Here for τ2k−1 we give the formula for
the left Dehn twist. The other generators all correspond to right Dehn twists. Moreover, for
k ∈ J1, g − 1K, the element Θk described in Table 3 is fixed by τ2g+k.
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τ2k , k ∈ J1, gK αk 7→ αkβk
τ2k−1 , k ∈ J1, gK βk 7→ βkαk
τ2g+k , k ∈ J1, g − 1K αk+1 7→ Θ−1

k αk+1

αk 7→ αkΘk

βk 7→ Θ−1
k βkΘk

where Θk = αk+1β
−1
k+1α

−1
k+1βk

Table 3.

On the other hand, one can define the mapping class group of orientation preserving home-
omorphisms of ∆̄ that preserve the set Y n and restrict to the identity on ∂∆. It is classically
called the braid group on n strands and denoted Bn. Continuating such homeomorphisms by
the identity on the complement of ∆ in Σg, we get a morphism

ϕ0 : Bn → Γ̂•
g,n.

After Artin [2], the group Bn is generated by half-twists σ1, . . . , σn−1, whose action is depicted
in Figure 5.

yi+2yi−1 yi−1 yi

yi+1

yi+1

γi

yi

y0

yi+2

∆

γi+1

σi

∆

y0

Figure 5. half-twists

Lemma 6.2.2 (half-twists). The action of Bn = 〈σ1, . . . , σn−1〉 on the fundamental group
π1(∆̄ \ Y n, y0) is described in Table 4, where we only indicate the non-trivial actions on the
generators. Moreover, Table 4 indicates the action of σcycl := σn−1 ◦ · · · ◦ σ1 ∈ Bn and some of
its powers.

σk , k ∈ J1, n− 1K γk 7→ γkγk+1γ
−1
k

γk+1 7→ γk
σcycl γ1 7→ δγnδ

−1

γi 7→ γi−1 , i ∈ J2, nK

σkcycl , k ∈ J1, nK γi 7→ δγn+i−kδ
−1, i ∈ J1, kK

γj 7→ γj−k , j ∈ Jk + 1, nK

Table 4.

Remark 6.2.3. Note that σcycl is almost a cyclic permutation of the generators of π1(∆̄\Y n, y0).
More precisely, it acts as such on the representations ρ that satisfy ρ(δ) = id, e.g. representations
with abelian image.

By construction, the subgroups ϕ0(Bn) and ϕg(Γ
1
g) of Γ̂

•
g,n commute, and we have a morphism

Bn × Γ1
g

ϕ0×ϕg
−→ Γ̂•

g,n .
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Composing with the canonical map π : Γ̂•
g,n → Γ̂g,n (forgetting that y0 is fixed) yields a mor-

phism Bn × Γ1
g → Γ̂g,n, which is not surjective. In order to generate the whole mapping class

group Γ̂g,n, it suffices to add min(0, n − 1) Dehn twists, namely the ones corresponding to the
loops τ3g, . . . , τ3g+n−2 of Figure 6 (see [11, Sec. 4.4.4]). We call them mixing twists.

y1

yk+1

yk+2

yk

yn

y0

τ3g−1+k

τ3g−1+k+1

Figure 6. Mixing twists

Lemma 6.2.4 (Mixing twists). The action of the (right) mixing twists τ3g, . . . , τ3g+n−2 on the
fundamental group Λg,n is described in Table 5, where we only indicate the non-trivial actions on
the generators. Moreover, for k ∈ J1, n− 1K, the element Ξk described there is fixed by τ3g−1+k.

τ3g−1+k , k ∈ J1, n− 1K αg 7→ αgΞk
βg 7→ Ξ−1

k βgΞk
γi 7→ Ξ−1

k γiΞk , i ∈ J1, kK
for Ξk = (γ1 . . . γk)

−1βg

Table 5.

The twists, mixing twists and braids we introduced all fix y0. We denote by Γ̂◦
g,n the subgroup

of Γ̂•
g,n they generate. If g = 0, then we have Γ̂◦

g,n = Bn. We are interested in the case g > 0,
where we have

Γ̂◦
g,n := 〈τi , σj | i ∈ J1, 3g − 1 +min(0, n − 1)K , j ∈ J1, n− 1K〉 .

As mentioned, the image of Γ̂◦
g,n under π : Γ̂•

g,n → Γ̂g,n is Γ̂g,n.

Remark 6.2.5. We did not call δ = γ1 · · · γn = ([α1, β1] · · · [αg, βg])
−1 a generator of the funda-

mental group. It will nevertheless be useful to notice that among our preferred generators of
Γ̂◦
g,n, only the mixing twists act non trivially on δ. More precisely, for k ∈ J1, n− 1K we have

τ3g−1+k(δ) = [Ξ−1
k , βg]δ .

7. Affine representations with finite orbit

We have now established an explicit description of the full mapping class group action on Λg,n,
which is resumed in Table 2. This description at hand, we will now classify affine representations
ρ ∈ Hom(Λg,n,Aff(C)) with finite orbit Γ̂g,n · [ρ] in χg,n(Aff(C)) for g > 0:

• We establish that for those representations ρ ∈ Hom(Λg,n,Aff(C)) such that the group

Im(ρ) is abelian, the orbit Γ̂g,n · [ρ] is finite if and only if Im(ρ) is finite (see Proposition
7.1.2).

• We then consider representations ρ ∈ Hom(Λg,n,Aff(C)) such that the group Im(ρ) is
not abelian. We classify all finite orbits in this case in three steps.
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– We give a necessary condition for the finiteness of Γ̂g,n · [ρ] in Lemma 7.2.2.

– We prove that in the genus one case, this necessary condition is also sufficient (see
Proposition 7.3.1).

– We prove that in the higher genus case, this necessary condition can be enforced (see
Lemma 7.4.1), and this latter necessary condition cannot hold for every conjugacy

class [ρ′] ∈ Γ̂g,n · [ρ]. We conclude that in the higher genus case, there are no

conjugacy classes of non-abelianAff(C)-representations with finite orbit under Γ̂g,n
(see Proposition 7.4.2).

The group Aff(C) = {(aij) ∈ GL2(C) | a21 = 0 , a22 = 1} identifies with the group {z 7→ az+
b | a ∈ C

∗, b ∈ C} of affine transformations of C. For shortness, its elements will be denoted as
polynomials az + b. Our explicit calculations are easier to check with the following formulas in
mind.

(λz) ◦ (az + b) ◦ (λz)−1 = az + λb
(z + c) ◦ (az + b) ◦ (z + c)−1 = az + b− c(a− 1)

[λz + c, az + b] = z − c(a− 1) + (λ− 1)b

Also, recall that by definition, for all τ ∈ Γ̂◦
g,n , ρ ∈ Hom(Λg,n,Aff(C)) and α ∈ Λg,n, we have

(τ · ρ)(α) = ρ(τ−1
∗ α) .

7.1. Abelian case.

Lemma 7.1.1 (Finding a non-trivial subgroup). Let g > 0, n ∈ N. Let G be a group with

identity element id and let ρ : Λg,n → G be a representation. Assume that for any ρ′ ∈ Γ̂◦
g,n · ρ,

we have

ρ′(αg) = id .

Then ρ is the trivial representation, i.e. Im(ρ) = {id}.

Proof. To each element ρ′ ∈ Γ̂◦
g,n · ρ, we associate the following two groups:

R′ := 〈ρ′(αg), ρ
′(βg), . . . , ρ

′(α1), ρ
′(β1)〉 , S′ := 〈ρ′(γ1), . . . , ρ

′(γn)〉.

• First step: for any ρ′ ∈ Γ̂◦
g,n · ρ, the associated group R′ is trivial.

For k ∈ J1, gK, define the following property, which we shall denote H(k):

For any ρ′ ∈ Γ̂◦
g,n · ρ, the group R′

k := 〈ρ′(αg), ρ
′(βg), . . . , ρ

′(αk), ρ
′(βk)〉 is trivial.

Reasoning by decreasing induction, let us first prove that our assumption implies H(g).
Consider τ := τ−1

2g and ρ′ = τ · ρ. Then ρ′(αg) = ρ(αgβg) = ρ(βg). We have ρ′(αg) =

ρ(αg) = id, hence ρ(βg) = ρ(αg) = id. However, ρ satisfies the assumption of the

statement if and only if any ρ̃ ∈ Γ̂◦
g,n · ρ does. Hence we have H(g).

Let now ρ be a representation satisfying H(k). In particular, we have

ρ(αi) = ρ(βi) = id ∀i ∈ Jk, gK .

For ρ′ = τ · ρ, with τ = τ−1
2g+k−1 we have ρ′(αk) = ρ(β−1

k−1αkβk) = ρ(βk−1)
−1.

For ρ′ = τ · ρ, with τ = (τ2k−3 ◦ τ2g+k−1)
−1, we have ρ′(αk) = ρ(βk−1αk−1)

−1.
Hence ρ satisfying H(k) implies

ρ(αi) = ρ(βi) = id ∀i ∈ Jk − 1, gK .

Yet again ρ satisfies H(k) if and only if any ρ̃ ∈ Γ̂◦
g,n · ρ does. This yields H(k− 1). We

conclude by noticing R′ = R′
1.
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• Second step: for any ρ′ ∈ Γ̂◦
g,n · ρ, the associated group S′ is trivial.

If n = 0 or n = 1, there is nothing to prove. Assume n > 1. We have already proven that
R′ is trivial for any ρ′ ∈ Γ̂◦

g,n · ρ. In particular ρ′(δ) = id. Considering, for i ∈ J1, nK,

the action of τ = (σn−icycl ◦ τ3g+n−2)
−1 on αg then shows that for ρ′ = τ · ρ we have

id = ρ′(αg) = ρ(γi) (see Table 4 page 24). Hence

〈ρ(γ1), . . . , ρ(γn)〉 = {id} .

Since the assertion is Γ̂◦
g,n-invariant, we have proven that S′ is trivial for any ρ′ ∈ Γ̂◦

g,n ·ρ.

We conclude that Im(ρ) = Im(ρ′) = 〈S′, R′〉 = {id}. �

Proposition 7.1.2 (Abelian case). Let g > 0. Let ρ : Λg,n → Aff(C) be a representation such
that the group Im(ρ) is abelian. Then the orbit of the conjugacy class [ρ] under the action of

Γ̂g,n is finite if and only if Im(ρ) is finite.

Proof. If Im(ρ) is finite, then the orbit Γ̂◦
g,n · ρ is finite. A fortiori, the orbit Γ̂◦

g,n · [ρ] is finite.
Assume now that ρ is abelian and the orbit of [ρ] is finite. Since Im(ρ) is an abelian subgroup
of Aff(C) it is, up to conjugation, either a non-trivial subgroup of the translation group

{z 7→ z + c | c ∈ C} ⊂ Aff(C) ,

or it is a subgroup of the linear group

{z 7→ λz | λ ∈ C
∗} ⊂ Aff(C) .

• Im(ρ) cannot be a non-trivial translation group.
Indeed, if it would be the case, by Lemma 7.1.1, we might assume ρ(αg) 6= id. Up to
conjugation, we would then have

ρ

(
αg
βg

)
=

(
z + 1
z + c

)

for a certain c ∈ C. Considering the action of τ−m with τ := τ2g−1 :

τ−m · ρ

(
αg
βg

)
= ρ

(
αg
βgα

m
g

)
=

(
z + 1
z + c+m

)
,

we would deduce that, for m 6= m′, the conjugacy classes of τm ·ρ and τm
′

·ρ are distinct.
Hence Γ̂◦

g,n · [ρ] would be infinite, yielding a contradiction.

• If Im(ρ) is a subgroup of the linear group, then it is finite.
Note that two distinct linear representations are not conjugated. For any i ∈ J1, gK,
finiteness of the orbit under 〈τ2i〉 yields that ρ(βi) is torsion. Similarly, considering
〈τ2i−1〉 yields that ρ(αi) is torsion for all i ∈ J1, gK. For j ∈ J1, n − 1K, finiteness of the
orbit under 〈τ3g−1+j〉 yields that ρ(γ1 . . . γj) is torsion. Consequently, γj is torsion for
all j ∈ J1, n− 1K. Hence

Im(ρ) = 〈ρ(αi), ρ(βi), ρ(γj) | i ∈ J1, gK , j ∈ J1, n − 1K〉

is an abelian group generated by finitely many torsion elements, whence the conclusion.

�

7.2. Preparation lemmata.

Lemma 7.2.1 (Finding a non-abeliansubgroup). Let g > 0. Let ρ : Λg,n → Aff(C) be a

representation. Assume that for any ρ′ ∈ Γ̂◦
g,n · ρ, the subgroup

〈ρ′(αg), ρ
′(βg)〉

of Im(ρ) is abelian. Then ρ is an abelian representation, i.e. Im(ρ) is abelian.
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Proof. We follow the same proof scheme we used for Lemma 7.1.1. For any k ∈ J1, gK, to any

ρ′ ∈ Γ̂◦
g,n · ρ we may associate the following groups:

R′
k := 〈ρ′(αg), ρ

′(βg), . . . , ρ
′(αk), ρ

′(βk)〉 , S′ := 〈ρ′(γ1), . . . , ρ
′(γn)〉 .

• First step: For any ρ′ ∈ Γ̂◦
g,n · ρ, the group R′

g is contained in the center of R′
1.

For k ∈ J1, gK, define the following property.

H(k) : For any ρ′ ∈ Γ̂◦
g,n · ρ, the group R′

g is a subgroup of the center of R′
k.

By assumption, we have H(g). Reasoning by decreasing induction, assume now H(k)
is proven. In particular, Rg := 〈ρ(αg), ρ(βg)〉 is a subgroup of the center of Rk :=
〈ρ(αg), ρ(βg), . . . , ρ(αk), ρ(βk)〉.

Note that ρ satisfies H(k) if and only if any ρ̃ ∈ Γ̂◦
g,n · ρ satisfies H(k). Hence in order

to prove H(k − 1), is suffices to prove that Rg is also a subgroup of the center of Rk−1.

For ρ′ = τ · ρ, with τ = τ−1
2g+k−1, only one of the generators of Rk is modified, namely

ρ′(αk) = ρ(β−1
k−1αkβk) = ρ(βk−1)

−1ρ(αkβk) .

In particular, we have ρ′(βg) = ρ(βg). Then H(k) implies that ρ(βg) belongs to the

center of 〈Rk, R
′
k〉 = 〈Rk, ρ(βk−1)〉 . For ρ

′′ = τ ′ · ρ, with τ ′ = τ ◦ τ−1
2k−3, we have

ρ′′(αk) = ρ(βk−1αk−1)
−1ρ(αkβk) .

Then H(k) implies that ρ′′(βg) = ρ(βg) belongs to the center of 〈Rk, R
′′
k〉 =

〈Rk, ρ(βk−1αk−1)〉. We have now proven that for any representation ρ such that H(k)
holds, ρ(βg) is an element of the center of

Rk−1 = 〈Rk, R
′
k, R

′′
k〉 .

This assertion applied to τ−1
2g−1 · ρ shows that ρ(βgαg) is an element of the center of

Rk−1. Hence Rg = 〈ρ(βg), ρ(βgαg)〉 is a subgroup of the center of Rk−1.

• Second step: For any ρ′ ∈ Γ̂◦
g,n · ρ, the group R′ := R′

1 is abelian.

If R′ is trivial, then in particular it is abelian. If R′ is non-trivial, then by the first step in
the proof of Lemma 7.1.1, we can find τ ′ ∈ Γ̂◦

g,n such that for the induced representation

ρ′′ = τ ′ · ρ we have R′′ = R′ and R′′
g is non-trivial. Hence by the first step of the current

lemma, R′ has a non-trivial center. Yet any subgroup of Aff(C) with non-trivial center
is abelian.

• Third step: For any ρ′ ∈ Γ̂◦
g,n · ρ, the group R′

g is a subgroup of the center of Im(ρ′).

We have now proven that under our assumption, R′ is abelian for any ρ′ ∈ Γ̂◦
g,n · ρ. In

particular, ρ(δ) = id. Recall, from Remark 6.2.5, the action of the mixing twist τ3g+n−2

on δ. It is given by δ 7→ [β−1
g δγ−1

n , βg]δ.

Hence, for ρ′ = τ · ρ with τ = (σn−icycl ◦ τ3g+n−2)
−1, we have

ρ′(δ) = [ρ(β−1
g γ−1

i ), ρ(βg)] = [ρ(βg)
−1, ρ(γi)

−1]

(see Table 4 page 24). Consequently, ρ(βg) centralizes S := 〈ρ(γi) | i ∈ J1, nK〉. Yet we

could have applied the same argument to ρ′′ = τ ′ · ρ, where τ ′ = τ−1
2g−1 is the inverse of

the Dehn-twist βg 7→ βgαg, and we would have obtained that ρ(βgαg) centralizes S. It

follows that Rg centralizes S. By Γ̂◦
g,n-invariance of the statement, we deduce that for

any ρ′ ∈ Γ̂◦
g,n · ρ, the associated group R′

g centralizes Im(ρ′) = 〈R′, S′〉.

• Fourth step: Im(ρ) is abelian.
If ρ is the trivial representation, there is nothing to prove. Otherwise, by Lemma 7.1.1,
there is a representation ρ′ ∈ Γ̂◦

g,n · ρ in the orbit of ρ such that R′
g = 〈ρ′(αg), ρ

′(βg)〉 is

not the trivial group. On the other hand, we have proven that R′
g is a subgroup of the

center of Im(ρ′). Hence Im(ρ) = Im(ρ′) is abelian.
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Lemma 7.2.2 (Prepared form). Let g > 0. Let ρ : Λg,n → Aff(C) be a representation. Assume

that Im(ρ) is nonabelian and Γ̂g,n · [ρ] is finite. Then up to the action of a certain element of
the mapping class group and up to conjugation, ρ is of the following “prepared form”

(16) ρ




αg
βg
αi
βi
γj




=




µmgz
z + 1
µmiz + ai
z + bi
z + cj



,

for i ∈ J1, g − 1K and j ∈ J1, nK, where µ ∈ C
∗ \ {1} is a root of unity, mg,mi ∈ Z, ai, bi, cj ∈ C

and µmg 6= 1.

Proof. According to Lemma 7.2.1, up to the action of an element of the mapping class group,
we may assume ρ([αg, βg]) 6= id. Since Γ̂g,n · [ρ] is finite, the linear part ρlin of ρ also has finite
orbit. After Proposition 7.1.2, ρlin takes values in a finite cyclic group 〈µ〉 ⊂ C

∗. Hence for
each i ∈ J1, gK, we have

ρ(αi) = µmiz + ai, ρ(βi) = µniz + bi

for integers mi, ni ∈ Z and complex numbers ai, bi ∈ C. Consider the actions of τ−1
2i and τ−1

2i−1
on (mi, ni) (the other exponents are not altered) :

τ−1
2i−1

(
mi

ni

)
7→

(
1 0
1 1

)(
mi

ni

)

τ−1
2i

(
mi

ni

)
7→

(
1 1
0 1

)(
mi

ni

)

These actions generate the action of SL2Z on (mi, ni) ∈ Z
2. If (mi, ni) 6= (0, 0), then m̃i :=

gcd(mi, ni) is a well-defined positive integer. Let pi and qi be integers such that pimi+qini = m̃i.
The matrix (

pi qi
− ni

m̃i

mi

m̃i

)
∈ SL2Z

then sends (mi, ni) to (m̃i, 0). Hence, up to the action of a word in the twists (τ2i)i∈J1,gK,
(τ2i−1)i∈J1,gK, we may assume ni = 0 for each i ∈ J1, gK. The property ρ([αg, βg]) 6= id is not
altered by such a word, hence µmg 6= 1. Up to conjugation by an element of Aff(C), we may
moreover assume

(17) ρ

(
αg
βg

)
=

(
µmgz
z + 1

)
.

Note that since µmg 6= 1, ρ is the unique representative of the conjugacy class [ρ] satisfying
(17). For j ∈ J1, nK, let cj , dj ∈ C be defined by ρ(γj) = djz+ cj . For k ∈ Z, consider the action

of τ−k2 :

(18) τ−k2 · ρ




αg
βg
γj


 =




µmgz + kµmg

z + 1
djz + cj


 ≈




µmgz
z + 1

djz + cj − k
(dj−1)µmg

µmg−1


 .

Here the equivalence sign stands for being conjugated by an element of Aff(C). For the sequence,
parametrized by k ∈ Z, of normalized triples (18) to be finite, we must have dj = 1. �
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7.3. Non-abeliancase in genus one.

Proposition 7.3.1 (Non-abelianrepresentations for g = 1). Assume g = 1. Let ρ : Λg,n →

Aff(C) be a representation with non-abelianimage (in particular n ≥ 1). Then the orbit Γ̂g,n · [ρ]
is finite if and only if there is a root of unity µ 6= 1 and c := (c1, . . . , cn) ∈ C

n with
∑n

i=1 ci = 1

such that [ρ] ∈ Γ̂g,n · [ρµ,c], where ρµ,c is the representation given by

ρµ,c(α1) = µz ; ρµ,c(β1) = z −
1

µ− 1
; ρµ,c(γi) = z + ci ∀i ∈ J1, nK .

Proof. Recall that for g = 1, the fundamental group Λg,n has the following presentation

Λg,n = 〈α1, β1, γ1, . . . , γn | γ1 · · · γn = [α1, β1]〉 ,

and the mapping class group Γ̂g,n is generated by the elements of Table 6. Assume [ρ] has finite

τ1 β1 7→ β1α1

τ2 α1 7→ α1β1
τ̃2+k := τ−1

2 ◦ τ2+k , k ∈ J1, n− 1K α1 7→ α1β
−1
1 Ξk

β1 7→ Ξ−1
k β1Ξk

γi 7→ Ξ−1
k γiΞk , i ∈ J1, kK

where Ξk = (γ1 . . . γk)
−1β1

σi , i ∈ J1, n− 1K γi 7→ γiγi+1γ
−1
i

γi+1 7→ γi

Table 6.

orbit, then by Lemma 7.2.2, we have Γ̂g,n · [ρ] = Γ̂g,n · [ρµ,c] for a convenient choice of c ∈ C
n

and a root of unity µ 6= 1. Let us now prove that [ρµ,c] has finite orbit. Denote

N := order(µ) ; Dc := µZc1 + . . . + µZcn .

Denote the following sets of tuples of affine transformations

S1
µ,d :=

{(
µk1z

µk2z − d
µk1−1

) ∣∣∣∣∣
k1, k2 ∈ Z, k1 6∈ NZ,

gcd(k1, k2, N) = 1

}

S2
µ,d :=

{(
µk1z + d

µk2−1

µk2z

) ∣∣∣∣∣
k1, k2 ∈ Z, k2 6∈ NZ,

gcd(k1, k2, N) = 1

}

Rµ,c,d :=








z + c̃1
...

z + c̃n




∣∣∣∣∣∣∣

(ĉ1, . . . , ĉn) ∈ Sn · (c1, . . . , cn),

c̃i ∈ µZĉi ∀i ∈ J1, nK,

d =
∑n

i=1 c̃i




.

Moreover, we set Sµ,d := S1
µ,d ∪ S

2
µ,d. Then by definition, we have

ρµ,c




α1

β1
γ1
...
γn




∈ Oµ,c :=
⋃

d∈Dc








ϕα
ϕβ
ϕ1
...
ϕn




∣∣∣∣∣∣∣∣∣∣∣

(
ϕα
ϕβ

)
∈ Sµ,d ,




ϕ1
...
ϕn


 ∈ Rµ,c,d





.

Note that Oµ,c is a finite set, and we will prove that each conjugacy class in the orbit of ρµ,c
under the action of the mapping class group has a representative in Oµ,c. We shall denote [Oµ,c]
the image of Oµ,c in χg,n(Aff(C)).
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• The set [Oµ,c] is stable under the inverses of τ1 and τ2.
In order to prove this first assertion, it is enough to prove that the sets S1

µ,d and S2
µ,d

are stable under the action of τ−1
1 and τ−1

2 modulo conjugation by translations. Let

ρ

(
α1

β1

)
=

(
µk1z

µk2z − d
µk1−1

)
∈ S1

µ,d.

Then

τ−1
1 · ρ

(
α1

β1

)
=

(
µk1z

µk1+k2z − d
µk1−1

)
∈ S1

µ,d

and

τ−1
2 · ρ

(
α1

β1

)
=

(
µk1+k2z − µk1d

µk1−1

µk2z − d
µk1−1

)
.

To see that, up to conjugation by a translation, the latter image also belongs to Sµ,d,
we need to distinguish two cases. Firstly, if k1 + k2 ∈ NZ, then k2 6∈ NZ and we obtain

(
µk1+k2z − µk1d

µk1−1

µk2z − d
µk1−1

)
=

(
z + d

µk2−1

µk2z − d
µk1−1

)
≈

(
z + d

µk2−1

µk2z

)
∈ S2

µ,d

Secondly, if k1 + k2 6∈ NZ, then we obtain

(
µk1+k2z − µk1d

µk1−1

µk2z − d
µk1−1

)
≈

(
µk1+k2z

µk2z − d
µk1+k2−1

)
∈ S1

µ,d

In a similar way, one can show that up to conjugation by translations, we have τ−1
1 ·S2

µ,d ⊂

Sµ,d and τ−1
2 · S2

µ ⊂ S2
µ.

• The set [Oµ,c] is stable under the inverses of σ1, . . . , σn−1.
Indeed, for every ρ ∈ Oµ,c, the group 〈ρ(γ1), . . . , ρ(γn)〉 is a translation group. In
particular, it is abelian. Hence the elements σi act as permutations. But permutations
stabilize the set Rµ,c,d.

• The set [Oµ,c] is stable under the inverse of the modified mixing twist τ̃2+k for every
k ∈ J1, n− 1K.
Note that for k ∈ J1, n − 1K, up to a common conjugation by ρ(Ξk), the representation
ρ′ := τ̃−1

2+k · ρ may be described as follows, where Ξk = (γ1 . . . γk)
−1β1.





ρ′(α1) = ρ(Ξkα1β
−1
1 )

ρ′(β1) = ρ(β1)
ρ′(γi) = ρ(γi) i ∈ J1, kK;
ρ′(γj) = ρ(ΞkγjΞ

−1
k ) j ∈ Jk + 1, nK.

In the following calculations, i represents an index less or equal to k (if such an index
exists) and j represents an index greater than k.
Assume first that ρ (α1 , β1) ∈ S1

µ,d. Then

ρ




α1

β1
γi
γj


 =




µk1z

µk2z − d
µk1−1

z + c̃i
z + c̃j


 and ρ(Ξk) = µk2z −

d

µk1 − 1
−

k∑

i=1

c̃i .
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Hence

ρ′




α1

β1

γi

γj


 =




µk1z + d−
∑k

h=1 c̃h

µk2z − d
µk1−1

z + c̃i

z + µk2 c̃j




≈




µk1z

µk2z − d′

µk1−1

z + c̃i

z + µk2 c̃j



,

where

d′ = µk2d− (µk2 − 1)
k∑

i=1

c̃i =
k∑

i=1

c̃i +
n∑

j=k+1

µk2 c̃j ,

since d =
∑k

i=1 c̃i +
∑n

j=k+1 c̃j . In other words, up to conjugation by a translation, we

have ρ′ ∈ Oµ,c. By an almost identical argumentation, we show that if ρ ∈ Oµ,c with

ρ (α1 , β1) ∈ S2
µ,d, then τ̃

−1
2+k · ρ is also in Oµ,c modulo conjugation.

Since every element of Γ̂◦
g,n induces a bijection of χg,n(Aff(C)) and we have proven that [Oµ,c]

is stable under τ−1
i for every i ∈ J1, n+ 1K and σ−1

j for every j ∈ J1, n− 1K, these generators of

Γ̂◦
g,n induce bijections of

[Oµ,c] ⊂ χg,n(Aff(C)) .

Hence [Oµ,c] is also stable under τi for every i ∈ J1, n + 1K and σj for every j ∈ J1, n − 1K. We

conclude that the orbit Γ̂g,n · [ρµ,c] = Γ̂◦
g,n · [ρµ,c] is contained in the finite set [Oµ,c]. �

7.4. Non-abeliancase in higher genus. We are now considering the case g > 1, and arbitrary
n ≥ 0. Recall that Λg,n then contains the group

G := 〈αg−1, βg−1, αg, βg〉 ⊂ Λg,n

and Γ̂◦
g,n contains a subgroup

H := 〈τ2g−3, τ2g−2, τ2g−1, τ2g, τ3g−1〉 ⊂ Γ̂◦
g,n

acting on G as summarized by Table 7. Here, as usual, we only indicate the effect of the
generators of H on those generators of G which are not left invariant by the element of H under
consideration.

τ2k k ∈ Jg − 1, gK αk 7→ αkβk
τ2k−1 k ∈ Jg − 1, gK βk 7→ βkαk
τ3g−1 αg 7→ Θ−1αg

αg−1 7→ αg−1Θ
βg−1 7→ Θ−1βg−1Θ
where Θ = αgβ

−1
g α−1

g βg−1

Table 7.

Lemma 7.4.1 (Elimination criterion). Let g ≥ 2. Let ρ : Λg,n → Aff(C) be a representation of
the following “weak prepared form”

(19) ρ




αg
βg
αg−1

βg−1


 =




µmgz
z + 1
µmg−1z + a
z + b


 ,

where µ is a root of unity, a, b ∈ C, mg,mg−1 ∈ Z and µmg 6= 1. If Γ̂g,n · [ρ] is finite, then the
conditions of Table 8 are fulfilled.
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µmg−1 = 1
µmg

a = 0
b = 0

Table 8.

Proof. Note that if two representations ρ, ρ′ of the form (19) are conjugated, then they their
restrictions to G are equal. Assume

ρ




αg
βg
αg−1

βg−1


 =




µmgz
z + 1
µmg−1z + a
z + b




Now consider the action of τ−k2g−2 for k ∈ Z:

τ−k2g−2 · ρ




αg
βg
αg−1

βg−1


 =




µmgz
z + 1
µmg−1z + a+ k · µmg−1b
z + b




Since the suborbit (τ−k2g−2 · [ρ])k is supposed to take finitely many values, we have b = 0 .

Now consider the action of τ−k3g−1. We have

τ−k3g−1 · ρ




αg
βg
αg−1

βg−1


 =




µmgz + kµmg

z + 1
µmg−1z + a− kµmg+mg−1

z


 ≈




µmgz
z + 1

µmg−1z + a− k · µ
2mg+mg−1−µmg

µmg−1

z


 .

As the corresponding suborbit is supposed to be finite, we have µmg−1 = µ−mg .

In order to conclude, consider τ̃3g−1 = τ−1 ◦ τ3g−1 ◦ τ , where τ := τ2g−3 ◦ τ2g ◦ τ
−1
2g−1 ◦ τ2g. We

have

τ̃k3g−1∗
:




αg

βg

αg−1

βg−1


 7→




Θ̃−kαgΘ̃
k

βgΘ̃
k

αg−1Θ̃
k

Θ̃−kβg−1α
−1
g−1Θ̃

kαg−1Θ̃
k



,

where Θ̃ := τ−1
∗ Θ = α−1

g βg−1α
−1
g−1. We have

ρ
(
Θ̃k
)
= z − k · a .

Hence, modulo conjugation by ρ
(
Θ̃k
)
, we have

τ̃−k3g−1 · ρ




αg

βg

αg−1

βg−1


 ≈ ρ




αg

Θ̃kβg

Θ̃kαg−1

βg−1α
−1
g−1Θ̃

kαg−1




=




µmgz

z + 1− k · a
1

µmg z + (1− k) · a

z − k · aµmg


 .
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Provided 1− k · a 6= 0 (which is the case for an infinite number of k ∈ Z anyway), we obtain

τ̃−k3g−1 · ρ




αg

βg

αg−1

βg−1


 ≈




µmgz

z + 1

1
µmg z +

(1−k)·a
1−k·a

z − k·a
1−k·aµ

mg



.

Again by finiteness, we have a = 0 . �

Proposition 7.4.2 (Non-abelianrepresentations for g > 1). Assume g ≥ 2 and n ≥ 0. Let

ρ : Λg,n → Aff(C) be a representation with non-abelianimage. Then the orbit Γ̂g,n · [ρ] is
infinite.

Proof. Let g ≥ 2 and let ρ be a representation with finite orbit modulo conjugation. Let
us assume for a contradiction that ρ(Λg,n) is non-abelian. We may then assume that ρ is of
“prepared form” as in Lemma 7.2.2. In particular, we may assume that ρ is of “weak prepared
form” and hence, by Lemma 7.4.1, ρ satisfies the conditions of Table 8. In other words, we may
assume that ρ is of the following form.

ρ




αg
βg
αg−1

βg−1


 =




µz
z + 1
1
µ
z

z


 ,

where µ 6= 1 is a root of unity. We have

τ−1
3g−1 · ρ




αg
βg
αg−1

βg−1


 =




µz + µ
z + 1
1
µ
z − 1

z


 ; τ2g · (τ

−1
3g−1 · ρ)




αg
βg
αg−1

βg−1


 =




µz
z + 1
1
µ
z − 1

z


 .

Now τ2g ◦ τ
−1
3g−1 · ρ is also of weak prepared form, but is not compatible with the elimination

criterion of Table 8, whence the contradiction. �

8. Reducible rank 2 representations with finite orbit

Theorem B concerns representations ρ : Λg,n → GL2C that are reducible, i.e. that globally
fix a line in C

2. A particular case of reducible rank 2 representations are those that are totally
reducible, i.e. that globally fix two distinct lines in C

2. In Theorem B1, we will prove the
statement in the totally reducible case, and in Theorem B2, we will prove it in the reducible
but not totally reducible case. The juxtaposition of these two results yields Theorem B. First,
we are going to estimate the size of finite orbits of conjugacy classes of affine representation
under the pure mapping class group and prove the reduction to the affine case.

8.1. The size of some finite orbits. Note that since C
∗ is abelian, we have a natural identi-

fication between scalar representations and their conjugacy classes: χg,n(C
∗) = Hom(Λg,n,C

∗).
In particular, the pure mapping class group Γg,n acts on Hom(Λg,n,C

∗).

Proposition 8.1.1. Let g > 0, n ≥ 0. Let λ ∈ Hom(Λg,n,C
∗) be a scalar representation with

finite image. Then

(20) card(Im(λ))2g−1 ≤ card(Γg,n · λ) ≤ card(Im(λ))2g

Proof. Since Im(λ) is finite, there is a root of unity µ ∈ C
∗ such that Im(λ) = µZ. For each

j ∈ J1, nK, choose an integer mj ∈ Z such that λ(γj) = µmj . Denote N := order(µ) and

Oλ :=

{
(µkg , µℓg , . . . , µk1 , µℓ1)

∣∣∣∣
k := (kg, . . . , k1) ∈ Z

g , ℓ := (ℓg, . . . , ℓ1) ∈ Z
g

gcd(kg, . . . , k1, ℓg, . . . , ℓ1,m1, . . . ,mn, N) = 1

}
.
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Note that to any element (µkg , µℓg , . . . , µk1 , µℓ1) ∈ Oλ we can associate a well-defined representa-
tion λ′ ∈ Hom(Λg,n,C

∗) by setting λ′(αi) = µki ; λ′(βi) = µℓi for all i ∈ J1, gK and λ′(γj) = µmj

for all j ∈ J1, nK. In that sense, we can see Oλ as a subset of Hom(Λg,n,C
∗).

We claim that Γg,n ·λ = Oλ. Notice that this claim implies (20). Indeed, the second inequality
is obvious, and the first one follows from the fact that if we set for example kg = 1, then we can
choose all other exponents freely.

Let us now prove the claim. We clearly have λ ∈ Oλ. Each pure element τ of Γ̂◦
g,n transforms

the generators γi into conjugates ζ−1
i γiζi. Since C

∗ is abelian, this implies that for any represen-
tation λ′ corresponding to an element of Oλ, we have (τ · λ′)(γi) = λ′(γi) = µmi . Consequently,
Γg,n ·Oλ = Oλ and in particular Γg,n · λ ⊂ Oλ .

The orbits of Γ̂g,n on χg,n(C
∗) = Hom(Λg,n,C

∗) are the ones of Γ̂◦
g,n. Note that the subgroup

H := 〈τi | i ∈ J1, 3g − 1 + min(0, n − 1)K〉 ⊂ Γ̂◦
g,n is generated by pure elements. Translating

Table 2 into an action of Γ̂◦
g,n on the powers of µ corresponding to the generators of Λg,n then

yields the following.

(a) For a given (k̃g, . . . , k̃1) ∈ {1, . . . , N}g such that gcd(k̃g, . . . , k̃1,m1, . . . ,mn, N) = 1, the
subgroup 〈τ2i , τ2i−1 | i ∈ J1, gK〉 ⊂ H acts transitively on those elements of Oλ satisfying

gcd(ki, ℓi) = k̃i for all i ∈ J1, gK (see also the proof of Lemma 7.2.2).

(b) For all k̃ := (k̃g, . . . , k̃1) ∈ {1, . . . , N}g such that gcd(k̃g, . . . , k̃1,m1, . . . ,mn, N) = 1, there
is an element of the subgroup 〈τ2i , τ2i−1 , τ2g+i′ | i ∈ J1, gK , i′ ∈ J1, g − 1K〉 ⊂ H, which

sends the element of Oλ given by k = (gcd(k̃g, . . . , k̃1), 0, . . . , 0) and ℓ = ~0 to the element of

Oλ given by k = k̃ and ℓ = ~0.

(c) The subgroup 〈τ3g−1+j | j ∈ J1,min(0, n − 1)K〉 ⊂ H acts transitively on those elements of

Oλ satisfying ℓ = ~0 and ki = 0 for all i ∈ J1, g − 1K.

Consequently, the pure subgroup H acts transitively on Oλ. This implies Γg,n · λ = Oλ. �

Recall that we denote

(21) Aff(C) =

{(
a b
0 1

) ∣∣∣∣ a, b ∈ C, a 6= 0

}
.

Proposition 8.1.2. Let g = 1 and let n > 0. Let µ ∈ C
∗ be a root of unity of order

N > 1 and let c = (c1, . . . , cn) ∈ C
n with

∑n
i=1 ci = 1. Consider the representation ρµ,c ∈

Hom(Λg,n,Aff(C)) defined by

ρµ,c(α1) :=

(
µ 0
0 1

)
; ρµ,c(β1) :=

(
1 − 1

µ−1

0 1

)
; ρµ,c(γi) :=

(
1 ci
0 1

)
∀i ∈ J1, nK .

Recall from Proposition 7.3.1 that the orbit Γg,n · [ρµ,c] is finite in χg,n(Aff(C)). The size of this
orbit can be estimated as follows:

(22) φ(N)(2N − φ(N)) ·Nn′−1 ≤ card(Γg,n · [ρµ,c]) ≤ (N2 − 1)Nn′−1 ,

where n′ := card{i ∈ J1, nK | ci 6= 0} and φ denotes the Euler totient function.

Remark 8.1.3. Observe that the estimate (22) yields an equality if N is a prime number.

Proof. For convenience we shall represent the elements of Aff(C) by degree one polynomials
az + b, as in page 25. Denote

Dc := µZc1 + . . . + µZcn ; Sµ,d := S1
µ,d ∪ S

2
µ,d ; Rµ,c,d ; Oµ,c

as in the proof of Proposition 7.3.1. Moreover, denote

Rpureµ,c,d :=








z + c̃1
...

z + c̃n




∣∣∣∣∣∣∣

c̃i ∈ µZci ∀i ∈ J1, nK

d =
∑n

i=1 c̃i




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Opureµ,c :=
⋃

d∈Dc




(ϕα , ϕβ , ϕ1 , . . . , ϕn)

∣∣∣∣∣∣∣

(
ϕα
ϕβ

)
∈ Sµ,d ,




ϕ1
...
ϕn


 ∈ Rpureµ,c,d




.

We shall denote by [Oµ,c] and [Opureµ,c ] the respective images of Oµ,c and Opureµ,c in χg,n(Aff(C)).
By a slight refinement of the proof of Proposition 7.3.1, we have

(23) Γg,n · [ρµ,c] ⊂ [Opureµ,c ] .

Indeed, recall that the pure subgroup Γg,n of Γ̂g,n is the subgroup that respects the labellings

of the punctures. Each pure element τ of Γ̂◦
g,n transforms the generators γi into conjugates

ζ−1
i γiζi. As we have ρ(ζi) = µmz + d for suitable m ∈ Z, d ∈ C, we deduce (τ · ρ)(γi) = µmci.
This proves the inclusion (23).

Moreover, using Table 6 page 30, we can check successively:

(a) as observed in the proof of Lemma 7.2.2, any element ρ = [∗1, ∗2, z + c̃1, . . . z + c̃n] of [Oµ,c]
can be transformed into an element ρ′ = [z+ d/(µ− 1), µz, z+ c̃1, . . . , z+ c̃n] by an element
of 〈τ1, τ2〉, where d =

∑n
i=1 c̃i;

(b) for any j ∈ J1, nK, by the action of an element of Bn = 〈σi | i ∈ J1, n − 1K〉, the element ρ′

can be transformed into [z + d/(µ − 1) , µz, z + c′1, . . . , z + c′n], where c
′
1 = c̃j , c

′
j = c̃1 and

c′i = c̃i for i 6= 1, j;

(c) for any mj ∈ Z, using a power of τ̃3, we transform this latter element into [z+d′/(µ − 1), µz,
z + µmjc′1, . . . , z + c′n], where d

′ = d+ (µmj − 1)c̃j .

(d) reusing an element of Bn, one gets ρ′ altered only by replacing c̃j by µ
mj c̃j and d by d′.

This allows to infer that any element ρ = [∗1, ∗2, z + c̃1, . . . z + c̃n] of [Oµ,c] can be transformed

into [z +1/(µ− 1), µz, z + c1, . . . , z + cn] by a suitable element of Γ̂g,n. Reusing (a), we deduce

Γ̂g,n · [ρµ,c] = [Oµ,c]. The conjunction of this equality and the inclusion (23) yields

Γg,n · [ρµ,c] = [Opureµ,c ] .

Denote by [Sµ,d]t and [Opureµ,c ]t the set of equivalence classes of Sµ,d and O
pure
µ,c respectively modulo

conjugation by translations. For each d ∈ Dc, the cardinality of [Sµ,d]t equals the cardinality of

KN :=
{
(k1, k2) ∈ J1, NK2

∣∣ gcd(k1, k2, N) = 1
}
.

Indeed, for {i, j} = {1, 2}, the elements of Siµ,d that are not conjugated by a translation to an

element of Sjµ,d are precisely those corresponding to kj = 0 and gcd(ki, N) = 1. We can estimate

φ(N)(2N − φ(N)) ≤ card([Sµ,d]t) ≤ N2 − 1 .

These inequalities are readily derived from the inclusions
{
(k1, k2) ∈ J1, NK2

∣∣ gcd(k1, N) = 1 or gcd(k2, N) = 1
}
⊂ KN ⊂ J1, NK2 \ {(0, 0)}.

On the other hand, conjugations by translations act trivially on Rpureµ,c,d. By definition of n′,

we have

card


 ⋃

d∈Dc

Rpureµ,c,d


 = Nn′

.

We deduce

φ(N)(2N − φ(N))Nn′

≤ card[Opureµ,c ]t ≤ (N2 − 1)Nn′

.

The condition
∑n

i=1 ci = 1 ensures n′ > 0. In particular, there is an index i0 ∈ J1, nK such
that ci0 6= 0. Up to conjugation by powers of the linear transformation µz, we can normalize
c̃i0 = ci0 for each element in [Opureµ,c ]t, which yields card[Opureµ,c ] = 1

N
card[Opureµ,c ]t . �
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8.2. Reduction to the affine case. Consider the natural inclusion

ι : (C∗)2 → GL2C ; (a1, a2) 7→
(
a1 0
0 a2

)
.

Lemma 8.2.1. Let g ≥ 0, n ≥ 0. Let ρ ∈ Hom(Λg,n,GL2C) be a totally reducible representation.
Then there are scalar representations λ1, λ2 ∈ Hom(Λg,n,C

∗) such that [ρ] = [ι∗(λ1, λ2)] ∈
χg,n(GL2C). Moreover, we have

(24)
1

2
max{card(Γg,n · λi) | i ∈ {1, 2}} ≤ card(Γg,n · [ρ]) ≤ card(Γg,n · λ1) · card(Γg,n · λ2) .

In particular, the following are equivalent:

• Γg,n · [ρ] is a finite subset of χg,n(GL2C).

• Γg,n · λi is a finite subset of Hom(Λg,n,C
∗) for i = 1, 2.

Proof. The image of the map ι∗ from Hom(Λg,n, (C
∗)2) to χg,n(GL2C) is obviously the set of

conjugacy classes of totally reducible representations.
Note that by definition, the action of Γg,n on ι∗Hom(Λg,n, (C

∗)2), induced by the action on
Hom(Λg,n, (C

∗)2), coincides with the action of Γg,n on χg,n(GL2C). Moreover, we have

(25)
1

2
· card(Γg,n · (λ1 , λ2)) ≤ card(Γg,n · [ι∗(λ1 , λ2)]) ≤ card(Γg,n · (λ1 , λ2)) .

Indeed, the second inequality is obvious, and the first one follows from the fact that if [ι∗(λ1 , λ2)] =
[ι∗(λ

′
1 , λ

′
2)] then either (λ1 , λ2) = (λ′1 , λ

′
2) or (λ1 , λ2) = (λ′2 , λ

′
1).

On the other hand, we have

(26) max{card(Γg,n · λi) | i ∈ {1, 2}} ≤ card(Γg,n · (λ1 , λ2)) ≤ card(Γg,n · λ1) · card(Γg,n · λ2) .

We conclude by noticing that (25) and (26) imply (24). �

Remark 8.2.2. The equality [ρ] = [ι∗(λ1, λ2)] ∈ χg,n(GL2C) in the above Lemma is commonly
written as ρ = λ1 ⊕ λ2. We adopted this notation in the statement of Theorem B, and we will
use it in its proof.

Consider the natural inclusion

ιι : Aff(C) =

{(
a b
0 1

) ∣∣∣∣ a, b ∈ C, a 6= 0

}
→֒ GL2C .

Lemma 8.2.3. Let g > 0, n ≥ 0 and let ρ ∈ Hom(Λg,n,GL2C) be a reducible but not totally
reducible representation. Then there is a unique λ ∈ Hom(Λg,n,C

∗) and a unique conjugacy
class [ρAff ] ∈ χg,n(Aff(C)) such that [ρ] = [λ⊗ ιι∗ρAff ] ∈ χg,n(GL2C). Moreover, we have

(27) max{card(Γg,n ·λ) , card(Γg,n · [ρAff ])} ≤ card(Γg,n · [ρ]) ≤ card(Γg,n ·λ) ·card(Γg,n · [ρAff ]) .

In particular, the following are equivalent.

• Γg,n · [ρ] is a finite subset of χg,n(GL2C).

• Γg,n·λ is a finite subset of Hom(Λg,n,C
∗) and Γg,n·[ρAff ] is a finite subset of χg,n(Aff(C)).

Proof. The unique decomposition statement has been proven in Lemma 5.1.1 in Part A of the
present paper. This Lemma also yields (27). �

8.3. Proof of Theorem B.

Theorem B1. Let g ≥ 0, n ≥ 0. Let ρ ∈ Hom(Λg,n,GL2C) be totally reducible, i.e. ρ = λ1⊕λ2
is a direct sum of scalar representations. The following are equivalent:

• the orbit Γg,n · [ρ] in χg,n(GL2C) is finite.

• the subgroup Im(ρ) of GL2C has finite order.

Moreover, if the orbit Γg,n · [ρ] is finite, then its size can be estimated as follows:

(28)
1

2
max{card(Im(λi))

2g−1 | i ∈ {1, 2}} ≤ card(Γg,n · [ρ]) ≤ card(Im(ρ))2g .
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Proof. From Lemma 8.2.1, finiteness of the orbit Γg,n · [ρ] in χg,n(GL2C) is tantamount to the

finiteness of the orbits Γg,n · λi ⊂ Hom(Λg,n,C
∗) for i = 1, 2. Since [Γ̂g,n : Γg,n] = n! is finite,

finiteness of Γg,n ·λi is equivalent to the finiteness of Γ̂g,n ·λi. Proposition 7.1.2 establishes that

Γ̂g,n · λi is finite if and only if Im(λi) is finite. This proves the equivalence in the statement.
The left inequality in (28) follows from Lemma 8.2.1 and Proposition 8.1.1.

Each pure element τ of Γ̂◦
g,n transforms the generators γi into conjugates. By abelianity, for

ρ′ = τ · ρ and any i ∈ J1, nK, we get ρ′(γi) = ρ(γi). We deduce the right inequality in (28). �

Theorem B2. Let g > 0, n ≥ 0 and let ρ ∈ Hom(Λg,n,GL2C) be a reducible but not totally
reducible representation. The following are equivalent:

• the orbit Γg,n · [ρ] in χg,n(GL2C) is finite.

• g = 1 , n > 0, there are a scalar representation λ ∈ Hom(Λg,n,C
∗) and an affine repre-

sentation ρµ,c ∈ Hom(Λg,n,Aff(C)) as in Proposition 8.1.2 , such that

[ρ] ∈ Γg,n · [λ⊗ ρµ,c] .

Moreover, if the orbit Γg,n · [ρ] is finite, then its size can be estimated as follows:

(29) max
{
N2 , φ(N)(2N − φ(N))Nn′−1

}
≤ card(Γg,n · [ρ]) ≤ (N2 − 1)Nn′−1N2

2 ,

where n′ := card{i ∈ J1, nK | ρ(γi) 6∈ C
∗I2}, N := order(µ), N2 = card(Im(λ)) and φ is the

Euler totient function.

Proof. From Lemma 8.2.3, we know that [ρ] admits a unique decomposition [ρ] = [λ ⊗ ρAff ],
where λ is a scalar representation and ρAff is an affine representation. Moreover, since ρ is not
totally reducible, the affine representation ρAff has non-abelianimage. Still by Lemma 8.2.3,
the orbit Γg,n · [ρ] ⊂ χg,n(GL2C) is finite if and only if the orbits Γg,n · λ ⊂ Hom(Λg,n,C

∗) and
Γg,n · [ρAff ] ⊂ χg,n(Aff(C)) are finite. From Proposition 7.1.2, the orbit Γg,n ·λ ⊂ Hom(Λg,n,C

∗)

is finite if and only if λ has finite image. Since [Γ̂g,n : Γg,n] = n! is finite, finiteness of the orbit

Γg,n · [ρAff ] ⊂ χg,n(Aff(C)) is equivalent to the finiteness of the orbit Γ̂g,n · [ρAff ] ⊂ χg,n(Aff(C)).
Since ρAff has non-abelianimage, by the Propositions 7.4.2 and 7.3.1, the finiteness of the latter
orbit is equivalent to g = 1 , n > 0 and [ρAff ] ∈ Γ̂g,n · [ρµ,c′ ] for a convenient choice of a non-
trivial root of unity µ and c′ = (c′1, . . . , c

′
n) ∈ C

n with
∑n

i=1 c
′
i = 1. Composing with a suitable

element of Bn shows this is also equivalent to [ρAff ] ∈ Γg,n · [ρµ,c], for some c ∈ Sn · c′. This
proves the equivalence in the statement.

The estimate (29) follows from Lemma 8.2.3, Proposition 8.1.1 and Proposition 8.1.2, taken
into account that

card{i ∈ J1, nK | ρ(γi) 6∈ C
∗I2} = card{i ∈ J1, nK | ρAff(γi) 6= id} = card{i ∈ J1, nK | ci 6= 0}.

�
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